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PROJECT GOAL

¢ Goal: The goal of the project was to develop and
verify connection technologies for steel-plate
composite (SC) walls.

+ Specifics:

1. The verified connection technologies and data etc.
should be available in the public domain for easy
access by industry, regulators, DOE

2. Include SC wall-to-basemat anchorage, SC wall-to-
wall joints, and SC wall-to-slab connections

3. Consider different connection design and
performance philosophies




PURDUE

UNIVERSITY

PROJECT OBJECTIVES

1. Develop modular SC wall connection strategies, and
evaluate their structural behavior, fabrication
efficiency, and construction economy.

2. Develop and benchmark numerical modeling and
analysis techniques that can be used to investigate
the structural behavior, performance and failure of SC
wall connections.

3. Conduct experimental investigations to verify SC wall
connection performance.

4. Develop standardized connection details and design
guidelines that can be used to expedite the design,
review, licensing, and construction processes for .
SMRs.
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PROJECT TASKS

¢ Task 1 - Selection of connection configurations for the
project is complete.

¢ Task 2 —Computational simulation and benchmarking
analysis work Is complete. Expanded state-of-the-art
numerical techniques, concrete material models etc.

¢ Task 3 — Design and experimental evaluation of:

SC wall-to-basemat anchorage

SC wall-to-wall T-connections

SC wall-to-wall L-connections

SC wall-to-slab connections

SC wall-to-basemat anchorage

¢ Task 4 - Design guidelines for SC wall-to-wall .

connections, and full strength SC wall-to-basemat
anchorage
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MAJOR ACCOMPLISHMENT - 1
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ANSI/AISC N690-12
ANSI/AISC N690s1-15
An American National Standard

Specification for
Safety-Related Steel Structures

for Nuclear Facilities
Including Supplement No. 1
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January 31, 2012 (ANSI/AISC N690-12)
August 11, 2015 (ANSI/AISC N690s1-15)

Supersedes the Specification for Safety-Related Steel Structures
for Nuclear Facilities dated September 20, 2006
and all previous versions of this specification
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Approved by the AISC Committee on Specifications
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APPENDIX N9
STEEL-PLATE COMPOSITE (SC) WALLS

9T/0€/6

This appendix addresses the requirements for steel-plate composite (SC) walls in safety-
related structures for nuclear facilities. The provisions of this appendix are limited to SC
walls consisting of two steel plates (faceplates) composite with structural concrete between
them, where the faceplates are anchored to concrete using steel anchors and connected to
each other using fies.
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The appendix is organized as follows:

N9.1. Design Requirements

N9.2. Analysis Requirements

N9.3. Design of SC Walls

N9.4. Design of SC Wall Connections

User Note: A fl wchart to facilitate the use of the appendix has been provided in the
Commentary.

N9.1. DESIGN REQUIREMENTS

1. General Provisions

The following provisions apply to SC walls:
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ORGANIZATION OF APPENDIX N9

N9.3 Design of SC Walls N9.4 Design of SC Wall Connections
— N9.3.1 Tensile Strength —N9.4.1 General Provisions
— N9.3.2 Compressive Strength —N9.4.2 Required Strength
— N9.3.3 Out-of-Plane Flexural Strength —N9.4.3 Available Strength

— N9.3.4 In-Plane Shear Strength
— N9.3.5 Out-of-Plane Shear Strength

— N9.3.6 Strength Under Combined Forces
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CONNECTION DESIGN PHILOSOPHY

Required Strength

The required strength for the connections shall be determined as:

(a) 125% of the smaller of the corresponding nominal strengths of the connected
parts, or

(b) 200% of the required strength due to seismic loads plus 100% of the required
strength due to nonseismic loads (including thermal loads)

User Note: Connections designed for required strength as per option (a) develop
the expected capacity of the weaker of the connected parts. Connections designed
for required strength as per option (b) develop overstrength with respect to the
connection design demands, while ensuring that ductile limit states govern the
connection strength. Option (a) is preferred. Where option (a) is not practical,
option (b) may be used.
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CONNECT|ON DES|GN PHILOSOPHY UNIVERSITY

For option (a) (full-strength connections), a load increase factor (LIF) of 1.25 has
been selected to be consistent with ACI 349 (ACI, 2006) requirements, which is the
prevalent code for design of safety-related nuclear concrete facilities. The regula-
tory agency also considers the precedence established by ACI 349 to be the relevant
rubric for evaluating and accepting SC structures currently being built in the United
States, which are primarily replacements for RC structures. This factor also takes into
consideration the strain hardening and overstrength that will be expected in SC walls.
Because a full strength connection 1s designed for 1.25 times the nominal strength of
the connected SC walls, the connection is always adequate, provided the wall is safe

for the load combinations considered.
all othpr demands for Each Demand

For option (b) (overstrength connections), an LIF of 2.0 is applied to the
seismic demands with the intention to achieve the minimum high-confidence-of-low-
probability-of-failure margin of safety equal to 1.67, while utilizing the approach
specified in ACI 349 Appendix D for the connection design.

N9.4.2: Calculate Connection |
> Required Strength
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CONNECTION DESIGN

e

Available Strength

The available strength shall be calculated using the applicable force transfer mecha-
nism and the available strength of the connectors contributing to the force transfer
mechanism. The available strength for connectors shall be determined as follows:

(a) For steel headed stud anchors, the available strength is determined in accor-
dance with Specification Section 18.3.

(b) For welds and bolts, the available strength i1s determined in accordance with
Specification Chapter J.

(c) For compression transfer via direct bearing on concrete, the available strength
1s determined 1n accordance with Specification Section 16.3a.

(d) For a shear friction load transfer mechanism, the available strength is deter-
mined in accordance with ACI 349, Section 11.7.

(e) For embedded shear lugs and shapes, the available strength 1s determined in
accordance with ACT 349, Appendix D.

(f) Foranchor rods, the available strength 1s determined from ACI 349, Appendix D.



AISC N690s1: APPENDIX N9.4.3 PURDUE
CONNECTION DS|GN UNIVERSITY

mnection
echanism

N9.4.2 Compute Required
Strengths for Connectors | .
of FT

Available Strength

The connection available strength for each demand type should be calculated using

the applicable force transfer mechanism and the available strength of its contributing
connectors. Figure C-A-N9.4.2 lays out the procedure to be followed in calculating

the available strength for the connection.




AISC N690s1: APPENDIX N9.4.3 PURDUE
CONNECTION DESIGN EEAE L.

Connection
Qualification

If connections are peer-reviewed and
the peer-review panel recommends
connection gqualification v

A 4
Connection Qualification Connection Qualification
for each Individual for Combinations of

Demand Type Demands

Peer Review of Peer Review o
connection available strength connection adequacy for
For each demand type :ombinations of demands

A ¥ ,6@_; . i
If requfred by S, o ) If requfred by

Peer fleview ygp . L Peer feview
L, )

¥ Y Sl 3
Nonlinear FEA of Y Nonlinear FEA of
connection for connection for

individual demand models >l combined demand

Peer review is recommended to determine the connection adequacy for combinations
of demands, that is, combined in-plane and out-of-plane forces. If deemed necessary
by the peer review, the connection adequacy for combinations of demands should
be verified by the results of a nonlinear inelastic finite element analyses conducted

using benchmarked nonlinear finite element models. This verification should also
be reviewed. Figure C-A-N9.4.3 lays out the procedure for connection qualification.
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MAJOR ACCOMPLISHMENT - 2

¢ Development, review, balloting, and publication of
an AISC Design Guide for steel-plate composite
walls and connections.

¢ AISC Design Guide No. XX (2016). This design
guide has completed two review cycles, and has
been accepted by AISC for publication. Typesetting
IS ongoing right now.

¢ It includes design examples for both SC walls and
connections based on the findings of this DOE

project. .
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SC WALL-TO-BASEMAT ANCHORAGE CONNECTION™ " ° ' | o

Can be designed either as full-strength or over-strength
anchorage. Full-strength design is preferred and convenien
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RESEARCH NEEDED TO COMPLETE DESIGN

1. Direct shear strength of rebar-coupler anchor
systems. This information is not available in any
existing design codes / standards, and must be
verified through large-scale tests before adoption

2. Cyclic performance of SC walls designed with full-
strength connections. Focus on in-plane shear
behavior of SC wall piers and flanged walls.




DIRECT SHEAR STRENGTH OF REBAR-COUPLER ANCHOR SYSTEMS FOR
STEEL-PLATE COMPOSITE (SC) WALLS
Efe G. Kurt', Amit H. Varma?, and Young M. Sohn’

ABSTRACT

This paper focuses on the direct shear behavior of rebar-coupler anchor systems, and their use
for anchorage of steel-plate composite (SC) walls to the concrete basemat of safety-related nuclear
facilities. Large-scale rebar-coupler anchor specimens were tested under direct shear loading until
failure. The results included the applied load-slip displacement responses of the specimens, the
direct shear strength, and the observed failure mode. The American Concrete Institute (ACI) 349
code equation for calculating the direct shear strength of embedded anchors was compared with
the direct shear strengths from the tests. The code equation underestimated the direct shear strength
of the anchor system, because it was based on the assumption that shear failure occurs in the rebars,
whereas experimental observations indicated that shear fracture failure occurred in the coupler
rather than the rebars. The design equation was updated to utilize the net shear area of the coupler
instead of the rebars, after which the direct shear strengths from the tests could be calculated with
reasonable accuracy. The experimental results were also used to propose an empirical model for
the shear force-slip displacement response of rebar-coupler anchor systems.

Keywords: Composite, steel-plate composite, steel-concrete, direct shear strength, rebar-

coupler anchor.

! Post-Doctoral Research Associate, Idaho National Laboratory, efegkurt@gmail.com
2 Professor, Lyles School of Civil Engineering, Purdue University, ahvarma@gmail.com
3 Assistant Professor, Central Connecticut University at New Britain, CT, sohny@gmail.com
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MAJOR RESEARCH PRODUCTS - 1 SRR

& The direct shear strengths calculated using the
updated design equation were within 1% of the
corresponding failure loads from the tests.

& The load-slip relationships measured from the tested
specimens could be modeled empirically using a
modified version of the empirical model proposed for
the behavior of shear studs embeddedln concrete.

-
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Failure Plane
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Piers without Boundary Elements

Efe G. Kurt, S.MASCE";, Amit H. Vama, M.ASCE® Peter Booth®; and Andrew 5. Whittaker, MLASCE*
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In-Plane Seismic Behavior of Rectangular Steel-Plate
Composite Wall Piers

Simmek Epackechi, AMASCE'; Nam H. Nguyen®; Efe G. Kurt®; Andrew S. Whitiaker, MASCE®;
and AmitH. Vama, MASCE®
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SC WALL-TO-BASEMAT ANCHORAGE PURDUE
CONNECT|ON UNIVERSITY

Can only be designed as over-strength anchorage.
Preferred due to ease and pace of construction

r—"-’(‘, SC Wall
- ~«— section

e
e
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Concrete Rebars (extending
basemat : T into SC wall)

SC Wall-to-Basemat Anchorage using
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RESEARCH NEEDED TO COMPLETE DESIGN

1. Design and detailing of non-contact lap splice
between steel faceplates of SC walls and rebar from
concrete foundation. This information is not available
In any codes / standards, and must be verified using
large-scale tests before adoption

2. Cyclic performance of SC walls designed with over-
strength connection. Focus on in-plane shear
behavior of SC wall piers.
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Experimental Behavior and Design of Steel-Plate Composite-to-Reinforced Concrete (SC-

to-RC) Lap Splice Connections

Jungil Seo' and Amit H. Varma’®

' Research Engineer, School of Civil Engineering, Purdue University, 1040 South River Road, West Lafayette, IN,
USA 47907 (corresponding author). saojunpaf@gmail.com
\ * Professor, School of Civil Engineering, Purdue University, West Lafayette, IN, USA. ahvarma(@purdue.edu

ABSTRACT

Steel-plate composite (SC) walls can be anchored to reinforced concrete (RC) foundations or
connected to RC walls using lap-splice connections. These lap-splice connections consist of steel
rebars or dowels that are fully developed (Ly) in the RC portion and embedded (L) in the SC
‘ ThIS pap s wall. Tension forces are transferred from the steel faceplates of the SC wall to the steel rebars or

n um erlC - dowels using stud anchors and ties welded to the steel faceplates. The efficiency of force transfer
depends on the dowel embedment length (), the number of stud anchors and ties engapged (z).
the eccentricity or distance between the steel faceplates and dowel bars (a), and the tie bar
reinforcement ratio (g,). This paper presents the results of experimental investigations conducted
between in Japan and in the US to evaluate the pullout (tension) strength and ductility of these lap-splice
and tle b connections. The parameters included in the tests were Lo n, a, and g, The effects of
eccentricity (offset distance between dowel bars and steel faceplates) on the axial tension
behavior of SC-to-RC lap-splice connections were also investigated. Detailed numerical models
were developed to gain additional insight into the behavior and force transfer in lap-splice
connections. The results from the experimental and numerical investigations were used to

propose design and detailing recommendations for lap-splice connections.

Keywords: Steel-plate composite shear wall; Safety-related nuclear structure; Lap-splice

connections.
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¢ PRIMARY FINDINGS

¢ Force transfer from the steel faceplates (of the SC portion) to
the steel dowels (of the RC portion) can be accomplished
using stud anchors.

¢ The number (n) and strength (Q,,) of these stud anchors and
ties should be designed and detailed to develop the expected
strength (N,) of the weaker of the connected parts.

¢ The embedmentlength (L.,) Of the steel dowels within the
SC portion will depend directly on the number (n) and spacing
(s) of stud anchors and ties, but it is not recommendedto be
less than the corresponding development length (L) of the
dowel bars in the RC portion.

¢ Shear reinforcement(p,,) ratio greater than 0.5% can provide
ductility. The steel dowel bars have to be placed at least 1.0x
dp dowel SO that concrete struts can be anchored adequately. .
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¢ Cyclic in-plane shear behavior of SC walls
designed with overstrength connection achieved
using non-contact spliced rebars

¢ Tested two specimens SCRC1 and SCRC2 with
aspect ratio of 0.6. The non-contact lap splices

between the steel plates and rebars were designed

using Seo et al. (2016).
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Applied Lateral Load (kips)
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Drift Ratio (%)
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Cyclic behavior of SCRC1 governed by
flexural yielding of the RC portion at the
base. Does not develop SC wall strength
Overstrength connection demonstrated
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Cyclic behavior of SCRC2 also governed
flexural yielding of the RC portion at the
base. Does not develop SC wall strength
Overstrength connection demonstrated
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Published in Ph.D. Dissertation of Efe Kurt. The correspondin
journal article is still being prepared

v
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¢ Wall-to-wall T-joints and L-joints are common in plant
layout configurations. See plan view below
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¢ Full-stre

+ Dovel Flexural yielding WO
conne
¢ Failur Joint shear failure n of
plastic
¢ Over-str
¢ Devel er than
the ca oad)

¢ In order to implement either philosophy, need to calculate
JOINT SHEAR STRENGTH to either prevent it (for full- .
strength) or have over strength with respect to it.
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Axial Tension in Discontinuous Wall
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For Out-of-Plane Shear Demand
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1. Joint shear strength for SC walls with T-joints, L-
joints, etc. There are no codes / standards that
provide this information. ACI 349 includes joint shear
strength for RC joints, but large-scale experimental
verification is needed to extend to SC joints

2. Joint shear strength for T-joints and L-joints can be
different, and need further evaluation




Seo, J., and Varma, A.H. (2016). “Behavior and Design of Corner or L-Joints in SC Walls.”

Structures, Elsevier Science, Submitted May 2016. PURDUE
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¢ Seo, J. and Varma, AH (2016). “Joint Shear
Strength of SC Wall-to-Wall T-Joints.” Journal of
Structural Engineering, ASCE, Submitted for review
and publication.

¢ Seo, J. and Varma, AH. (2016). “Behavior and
Design or Corner or L-Joints in SC Walls.”
Structures, Elsevier Science, Submitted for review
and publication

¢ Ph.D. Dissertation of Jungil Seo, Purdue Univ. .
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¢ The major research finding is that the joint shear
strength can be calculated conservatively, and with
reasonable accuracy using ACI 349 joint shear strength
equation for RC joints

¢y =12 for SC wall T-joints
¢ y = 8 for SC wall L-joints

¢ Another major finding is that the presence of tie bars,
or additional shear studs does not have a significant .
Influence on joint shear behavior or strength.
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Details of L-Joint Specimen .
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Test-Setup for T-Joint Specimens Test-Setup for L-Joint Specime.




Cyclic Loading Protocol
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H, = Lateral load at the expected joint shear strength,
A, = Projected displacement at 7,

Shear Force-Displacement Behavior Shear Force-Displacement Behavio
of T-Joint Specimens of L-Joint Specimen
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RESEARCH NEEDED TO COMPLETE DESIGN

¢ Out-of-plane shear and moment transfer mechanism
need experimental validation. There are no codes /
standards for estimating the out-of-plane shear
strength of the wall-to-slab joint region.

& Experimental verification of the wall-to-slab out-of-
plane shear strength is needed.
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¢ Two large-scale SC wall-to-RC slab specimens were
tested to evaluate the out-of-plane moment transfer
mechanism, and out-of-plane shear strength

& Specimens were designed to develop the flexural
capacity of the RC slab (using rebars).
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MAJOR RESEARCH PRODUCT - /
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¢ Appendix 1 of the Design Guide includes a complete

design example with calculations, drawings, details etc. for
an SC wall and corresponding basemat anchorage

connection
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CONCLUSIONS

¢ Project Goal and Objectives were achieved

+ All project tasks were completed successfully

¢ Several major research products in terms of journal
articles, conference papers and presentation etc.

¢ Major outcomes include Ph.D. dissertations of two
students. One working in INL now with structural
engineering and seismic group.
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CONCLUSIONS

¢ Published consensus code / standard from AISC
N690s1 (2015), and AISC Design Guide (2016) for SC
walls

¢ Developed two different connection design philosophies

¢ Developed SC wall-to-basemat anchorage connections
that could achieve difference performance, and verified
them experimentally

¢ Developed design equations and approaches for anchor
strength needed to complete design .
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CONCLUSIONS

¢ Developed design approaches for SC wall-to-wall
connections including T-joints and L-joints

¢ Developed and verified equations for estimating the
joint shear strength of SC wall-to-wall joints

¢ Developed and verified SC wall-to-RC slab connection

¢ Developed and published a complete design example
for SC walls and connections
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