

UNIVERSITY of HOUSTON

Periodic Material-Based Seismic Base Isolators for Small Modular Reactors

AMM Workshop US Department of Energy October 17 and 18, 2016

Research Team

Y. L. Mo – University of Houston Yu Tang – Argonne National Laboratory Robert Kassawara – Electric Power Research Institute K. C. Chang – National Center for Research on Earthquake Engineering, Taiwan

Project Monitoring Team

Alison Hahn (Krager) (Project Manager) Jack Lance (Technical POC)

2

Project overview

Objective:

To develop a periodic foundation that can completely obstruct or change the energy pattern of the earthquake before it reaches the structure of small modular reactors (SMR).

Scopes:

- (1) Perform comprehensive, analytical study on periodic foundations.
- (2) Design a SMR model with periodic foundations.
- (3) Verify the effectiveness of periodic foundations through shake table tests.
- (4) Perform finite element simulation of SMR supported by periodic foundations.

Project schedule

Task	2014	2015				2016				2017		
	Oct-Dec	Jan- Mar	Apr-Jun	Jul-Sep	Oct-Dec	Jan- Mar	Apr-Jun	Jul-Sep	Oct-Dec	Jan- Mar	Apr-Jun	Jul-Sep
1	Review of an	of previc d literati	ous work ure									
2		Theoretical study on periodic foundations										
3			De	esign of p	eriodic f	oundatio	ons					
4					Experimental study			dy of per	iodic fou	Indation	S	
5					Experimental data analysis and numer				rical			
6							 				Prepara final i	ation of report

Basic concept

Phononic crystal is a novel composite developed in solid-state-physics

Maldovan, M. (2013). Sound and heat revolutions in phononics. *Nature*, 503(7475), 209-217.
Thomas, E. L., Gorishnyy, T., & Maldovan, M. (2006). Phononics: Colloidal crystals go hypersonic. *Nature materials*, 5(10), 773-774.

Calculating dispersion curve

The governing equation of motion for a continuum body with isotropic elastic material

$$\rho(\mathbf{r})\frac{\partial^2 \mathbf{u}}{\partial t^2} = \nabla\left\{\left[\lambda(\mathbf{r}) + 2\mu(\mathbf{r})\right]\left(\nabla \cdot \mathbf{u}\right)\right\} - \nabla \times \left[\mu(\mathbf{r})\nabla \times \mathbf{u}\right]$$
 Eq. 1

Where:r is coordinate vector;u(r) is displacement vector;

 $\rho(\mathbf{r})$ is the density $\lambda(\mathbf{r})$ and $\mu(\mathbf{r})$ are the Lamé constant

The priodic boundary condition equation:

$$\mathbf{u}(\mathbf{r}+\mathbf{a},t) = e^{i\mathbf{K}\cdot\mathbf{a}}\mathbf{u}(\mathbf{r},t)$$
 Eq. 2

Where:K is the wave vectora is unit cell size

Substituting Eq. 2 to the governing equation Eq.1, the wave equation can be transferred into a Eigen value problem as follow:

$$(\mathbf{\Omega}(\mathbf{K}) - \omega^2 \mathbf{M}) \cdot \mathbf{u} = 0$$
 Eq. 3

Calculating dispersion curve

屮

Eigen value problem:

$$\left(\mathbf{\Omega}(\mathbf{K}) - \omega^2 \mathbf{M}\right) \cdot \mathbf{u} = 0$$

Where: Ω is the stiffness matrixM is the mass matrix

For each wave vector (**K**) a series of corresponding frequencies (ω) can be obtained.

Application of phononic crystals

Experimental study on periodic foundations

1D Periodic foundation^[1]

2D Periodic foundation^[2]

3D Periodic foundation^[3]

9

Theoretical study on periodic foundations

1D periodic foundation

Effect of material and geometric properties on the first frequency band gap

Effect of cross section size

80

60

40

20

-20

-40

-60

0

10

20

Frequency (Hz)

FRF(db)

Consider 1 unit cell on concrete base

1mx1m

2mx2m

3mx3m

30

40

Effect of number of unit cells

Effect of combined unit cells

Effect of superstructure

Equivalent layer

Wave number k (π /h)

Effect of material and geometric properties on the first directional frequency band gap

Design guidelines of 1D and 3D periodic <u>foundations</u>

1D periodic foundation

Starting of frequency band gap (S-Wave) = $13.51F_1(E_r)F_2(\rho_r)F_3(v_r)F_4(\rho_c)F_5(S)F_6(r)$ Width of frequency band gap (S-Wave) = $17.36G_1(E_r)G_2(\rho_r)G_3(v_r)G_4(\rho_c)G_5(S)G_6(r)$ Starting of frequency band gap (P-Wave) = $51.5H_1(E_r)H_2(\rho_r)H_3(v_r)H_4(\rho_c)H_5(S)H_6(r)$ Width of frequency band gap (P-Wave) = $66.1I_1(E_r)I_2(\rho_r)I_3(v_r)I_4(\rho_c)I_5(S)I_6(r)$

3D periodic foundation

Starting of directional frequency band gap = $18.46J_1(E_r)J_2(\rho_r)J_3(\nu_r)J_4(\rho_c)J_5(S)J_6(f_r)$ Width of directional frequency band gap = $8.9K_1(E_r)K_2(\rho_r)K_3(\nu_r)K_4(\rho_c)K_5(S)K_6(f_r)$

The equations are function of:

- E_r : Young's modulus of rubber
- $\rho_{\rm r}$: Density of rubber
- v_r : Poisson's ratio of rubber

- $\rho_{\rm c}$: Density of concrete
- S : Unit cell size (S)
- f_r : Filling ratio

Task 3: Design of periodic foundations

Small modular reactor (SMR) building

Courtesy of NuScale Power

SMR building

Finite element model of representative of NuScale's SMR Building

Material Properties:

• Reinforced concrete ($E_s = 31400 \text{ MPa}, \rho = 2300 \text{ kg/m}^3, \nu = 0.2$)

Mass of non-structural components:

- Water in reactor pool = 5.09 million gallon = 19.28×10^{6} kg
- Small modular reactors (12 units) = $12 \times (8 \times 10^5) = 9.6 \times 10^6$ kg
- Crane and utilities = 8×10^5 kg

SMR building

Mode shapes and natural frequencies of SMR building

Design of 1D periodic foundation

Design of 1D periodic foundation

Combined unit cellConcrete Layer 2 $h_{c2} = 1.32 \text{ m}$ Rubber Layer 2 $h_{r2} = 0.88 \text{ m}$ Concrete Layer 1 $h_{c1} = 1.1 \text{ m}$ Rubber Layer 1 $h_{r1} = 1.1 \text{ m}$

Material	Young's Modulus (MPa)	Density (kg/m ³)	Poisson's Ratio
Concrete	31400	2300	0.2
Rubber	3.49	1100	0.463

Design of 1D periodic foundation (Combined unit cell with equivalent structure layer)

-

				50	Transverse wave (5-wave)
Equivaler	nt Structure Lay	er $\int h_s^*$	s = 1.32 m	50 - 40 -	
Concrete Layer 2			$_2 = 1.32 \text{ m}$	(ZH) 30	
Rub	ober Layer 2	$\int h_r$	$_2 = 0.88 \text{ m}$	dneuc	
Concrete Layer 1		h_c	$_{l} = 1.1 \text{ m}$	원 도 10 -	
Rub	Dubbor Lovor 1				
			<u>1</u> – 1.1 m	-1	-0.5 0 0.5 Wave number <i>k</i> (π/h) Longitudinal wave (P-Wave)
Material	Young's Modulus (Pa)	Density (kg/m ³)	Poisson's Ratio	50	
Concrete	3.14×10^{10}	2300	0.2	(ZH)	
Rubber	3.49×10^{6}	1100	0.463		
Equivalent	3.14×10^{10}	24247.2	0.2	nbə 20 <mark>-</mark>	
Super Strc				止 10 -	

0

-1

-0.5

1

0.5

0

Wave number $k(\pi/h)$

Design of 1D periodic foundation

Natural frequencies of structure system

Design of 1D periodic foundation

24

Design of 3D periodic foundation

One unit cell of 3D periodic foundation

Material properties

Material	Young's Modulus (MPa)	Density (kg/m ³)	Poisson's Ratio
Reinforced Concrete	31400	2300	0.2
Rubber	3.49	1100	0.463

Dispersion curve for infinite number of unit cells

Starting of 1^{st} frequency band gap = 11.18 Hz Width of 1^{st} frequency band gap = 5.98 Hz

Design of 3D periodic foundation

Designed 3D periodic foundation supporting SMR building

Unit cells on periodic foundation: 13 X 6 X 1

Natural frequencies of structure system

Design of 3D periodic foundation

Similitude requirements for dynamic models

М	lodel type	True ultimate strength model	Models with artificial mass	Gravity forces neglected Linear elastic	Models with strain distortion
Secting Decomptors		(1)	(2)	(3)	(4)
Length l		l.	l.	1.	l. (1)
Time	t,	<i>I, ¹</i>	I, ^½	$l_r (E/\rho)_r^{-\frac{1}{2}}$	$(\varepsilon_r l_r)^{\frac{1}{2}}$
Frequency O _r		l, ^{-1/2}	l, ^{-1/2}	$l_r^{-1}(E/\rho)_r^{\frac{1}{2}}$	$(\varepsilon_r l_r)^{-\frac{1}{2}}$
Velocity V _r		l, ^½	l, ¹ /2	$(E/\rho)_r^{\frac{1}{2}}$	$(\varepsilon_r l_r)^{-\frac{1}{2}}$
Gravitational acceleration	g,	1	1	neglected	1
Acceleration a,		1	1	$l_r^{-1}(E/\rho)_r$	1
Mass density	ρ_r	E_r/l_r	**	ρ_r	$\varepsilon_r E_r l_r^{-1}$
Strain	ε,	1	1	1	ε,
Stress	σ_r	E,	E,	E,	Ε,ε,
Modulus of elasticity	E,	E,	E,	E,	E,
$\begin{array}{c c} \text{Specific} \\ \text{stiffness} \end{array} & (E/\rho)_r \end{array}$		l _r	**	$(E/\rho)_r$	l,ε,-½
Displacement	δ,	l _r	l _r	l _r	$l_r \varepsilon_r$
Force	F _r	$E_r l_r^2$	$E_r l_r^2$	$E_r l_r^2$	$E_r l_r^2 \varepsilon_r$
Energy	$(EN)_r$	$E_r l_r^3$	$E_r l_r^3$	$E_r l_r^3$	$E_r l_r^3 \varepsilon_r^2$

To fit the shake table, the length scale is decided to be $l_r = \frac{l_m}{l_p} = \frac{1}{22}$

m = modelp = prototype

Similitude requirements for dynamic models

Essential scaled parameters:

• Frequency band gaps $\frac{1}{\sqrt{l_r}} = \sqrt{22}$

• Natural frequency of periodic foundation structure system $\frac{1}{\sqrt{22}} = \sqrt{22}$

- Natural frequency of superstructure only $\frac{1}{\sqrt{l_r}} = \sqrt{22}$
- Duration of earthquake record $\sqrt{l_r} = \frac{1}{\sqrt{22}}$

Parameter	Prototype	Model	Required scale
Natural frequency of superstructure (Hz)	6.77	31.1	$\sqrt{22} = 4.69$
Natural frequency of 1D periodic foundation structure system (Hz)	0.59	3	$\sqrt{22} = 4.69$
First theoretical S-Wave frequency band gap of 1D periodic foundation with equivalent superstructure layer (Hz)	1.3 – 4.34	6.12 – 20.34	$\sqrt{22} = 4.69$
Natural frequency of 3D periodic foundation structure system (Hz)	0.86	4.06	$\sqrt{22} = 4.69$
First theoretical directional frequency band gap of 3D periodic foundation (Hz)	11.18 – 17.16	50.9 - 75.03	$\sqrt{22} = 4.69$
Sampling time of earthquake record (sec)	0.005	0.001066	$1/\sqrt{22} = 0.213$

Scaled SMR Building

Designed small scale SMR building

Scaled SMR Building

Mode shapes and natural frequencies of structure system

SMR building

Full-scale SMR building Scaled model of SMR building <u>Mode 1 ($f_{np} = 6.77 \text{ Hz}$)</u> <u>Mode 1 ($f_{nm} = 31.1 \text{ Hz}$)</u>

$$f_{nm} = f_{np}\sqrt{22}$$

= 6.77 × 4.69 = 31.75Hz ≈ 31.1Hz

Scaled 1D periodic foundation

Full-scale 1D periodic foundation unit cell

Scaled model of 1D periodic foundation unit cell

Equivalent Structure Layer	$h_s^* = 1.32 \mathrm{m}$	Equivalent Structure Layer	$h_s^* = 6 \text{ cm}$
Reinforced Concrete Layer 2	$h_{c2} = 1.32 \text{ m}$	Reinforced Concrete Layer 2	$\oint h_{c2} = 6 \text{ cm}$
Rubber Layer 2	$h_{r2} = 0.88 \mathrm{m}$	Polyurethane Layer 2	$h_{r2} = 4 \text{ cm}$
Reinforced Concrete Layer 1	$h_{cl} = 1.1 \text{ m}$	Reinforced Concrete Layer 1	$h_{c1} = 5 \text{ cm}$
Rubber Layer 1	$h_{r1} = 1.1 \text{ m}$	Polyurethane Layer 1	$h_{r1} = 5 \text{ cm}$

Material for Prototype

Material for Model

Material	Young's Modulus (MPa)	Density (kg/m ³)	Poisson's Ratio	Young's Modulus (MPa)	Density (kg/m ³)	Poisson's Ratio
Reinforced Concrete	31400	2300	0.2	31400	2300	0.2
Rubber	3.49	1100	0.463	0.1586	1100	0.463
Equivalent superstructure layer	31400	24247.2	0.2	31400	24247.2	0.2

Scaled 1D periodic foundation

Щ

34

Theoretical frequency band gap of full-scale unit cell

Frequency scale:

Starting of band gap scale: $\frac{f_m}{f_p} = \frac{6.12}{1.3} = 4.7$ close to $\frac{1}{\sqrt{l_r}} = \sqrt{22} = 4.69$ End of band gap scale: $\frac{f_m}{f_p} = \frac{20.34}{4.34} = 4.69$ same as $\frac{1}{\sqrt{l_r}} = \sqrt{22} = 4.69$

Theoretical frequency band gap of scaled model unit cell

 1^{st} Frequency band gap = 6.12–20.34 Hz

Scaled 1D periodic foundation

Scaled 3D periodic foundation

Full-scale 3D periodic foundation unit cell

Scaled model of 3D periodic foundation unit cell

Unit cell size = 36.36 cm; Core size = 32.5 cm;

	Material	l for Protot	ype	Material for Model			
Material	Young's Modulus (MPa)	Density (kg/m ³)	Poisson's Ratio	Young's Modulus (Pa)	Density (kg/m ³)	Poisson's Ratio	
Concrete	31400	2300	0.2	31400	2300	0.2	
Rubber	3.49	1100	0.463	0.1586	1100	0.463	

Scaled 3D periodic foundation

Theoretical frequency band gap of full-scale unit cell

Theoretical frequency band gap of scaled model unit cell

Frequency band gap = 11.18–17.16 Hz

Frequency band gap = 50.9-75.03 Hz

Г

Wave Vector

Х

Μ

Μ

Frequency scale:

Starting of band gap scale: $\frac{f_m}{f_p} = \frac{50.9}{11.18} = 4.55$ Close to $\sqrt{22} = 4.69$ End of band gap scale: $\frac{f_m}{f_p} = \frac{75.03}{17.16} = 4.37$ Close to $\sqrt{22} = 4.69$

Modal Comparison

Mode shapes and natural frequencies of structure system

Frequency scale:

Mode 1 scale $\frac{4.06}{0.86} = 4.72$ Mode 2 scale $\frac{4.17}{0.91} = 4.58$ Mode 3 scale $\frac{4.76}{0.95} = 5.01$ Scaled model of structure system

Task 4: Experimental Study of Periodic Foundations

Fabrication of test specimen

Construction of superstructure

Casting of concrete layers

Resin solution and polyurethane glue

Construction of 1D periodic foundation

12 actuators to simulate motions in 6 degrees of freedom

Experimental test of 1D periodic foundation

Case 1

Experimental test of 1D periodic foundation

Test items:

- For Cases 1 and 3 (foundations tests)
 - Scanning frequency tests in 3 directions (horizontal, vertical, and torsional)
- For Cases 2 and 4 (structure systems tests)
 - ➤ White noise tests in 3 directions (horizontal, vertical, and torsional)
 - Scanning frequency tests in 3 directions (horizontal, vertical, and torsional)
 - Seismic tests in 3 directions (horizontal, vertical, and torsional)
 - Harmonic tests in 3 directions (horizontal, vertical, and torsional)

Test setup

Scanning frequency tests for foundations (**Cases 1 and 3**)

Horizontal direction

Case 1

- Attenuation zone in horizontal direction for Case 1 is found at 12.74 50 Hz, which is close to theoretical frequency band gaps.
- In Case 3, the response at the top of concrete foundation is the same as input, which implies the foundation is rigidly attached to the shake table.

Scanning frequency tests for foundations (Cases 1 and 3)

Torsional mode

Case 1

- Attenuation zone in torsional mode for Case 1 is found at 12.7 50 Hz, which is close to theoretical frequency band gaps.
- In Case 3, the response at the top of concrete foundation is the same as input, which implies the foundation is rigidly attached to the shake table.

Scanning frequency tests for structure systems (Cases 2 and 4)

Horizontal direction Vertical direction **Torsional mode** Top foundation response Top foundation response Top foundation response 40 40 40 with periodic foundation with periodic foundation with periodic foundation with concrete foundation with concrete foundation with concrete foundation 20 20 20 0 (qp) -20 0 (qp) -20 FRF (db) -20 -40 -40 -40 -60 -60 -60 20 30 10 20 30 10 20 30 0 10 40 50 0 40 50 0 40 50 Frequency (Hz) Frequency (Hz) Frequency (Hz) Roof response **Roof response Roof response** 40 40 40 with periodic foundation with periodic foundation with periodic foundation with concrete foundation with concrete foundation with concrete foundation 20 20 20 0 (qp) -20 FRF (db) FRF (db) -20 -20 -40 -40 -40 -60 -60 -60 0 10 20 30 40 50 0 10 20 30 40 50 10 20 30 40 50 0 Frequency (Hz) Frequency (Hz) Frequency (Hz)

- In Case 2, large response reductions are observed in all three directions. Where FRF of -10 and -20 respectively correspond to 68.38% and 90% response reduction.
- In Case 4, the responses at the roof are mostly amplified in all three directions.

White noise tests for structure systems (Cases 2 and 4)

Natural frequency of structure system is 2.5 Hz (close to analytical result)

Case 2 white noise test in horizontal direction

Seismic tests for structure systems in horizontal direction (Cases 2 and 4)

Earthquake event: **Gilroy** (05/14/2002) Station: Gilroy array #3 Orientation: 58^o

Case 2 (with periodic foundation)

Case 4 (with concrete foundation)

Seismic tests for structure systems in horizontal direction (Cases 2 and 4)

Main frequency content of earthquake is inside frequency band gaps of periodic foundation

Earthquake

Gilroy

Oroville

Seismic tests for structure systems in **horizontal direction (Cases 2 and 4)**

Main frequency content of earthquake is inside frequency band gaps of periodic foundation

20

15

25

Earthquake With periodic foundation 0.8 0.8 Table Top Foundation (close to purple curve) 0.6 0.6 Roof 0.4 0.4 Acceleration (g) Acceleration (g) 0.2 0.2 Anza 0 0 -0.2 -0.2 -0.4 -0.4 -0.6 -0.6 -0.8 -0.8 10 20 30 0 0 Time (sec) 0.8 0.8 Table 0.6 0.6 Top Foundation (close to purple curve) Roof 0.4 0.4 Acceleration (g) 0.2 0.2 0 0 -0.2

-0.4

-0.6

-0.8

0

5

10

Time (sec)

With concrete foundation

Bishop

Seismic tests for structure systems in horizontal direction (Cases 2 and 4)

Main frequency content of earthquake is widely distributed

Earthquake With concrete foundation With periodic foundation 1.5 1.5 Table Table 1 Top Foundation (close to purple curve) Top Foundation (close to black curve) 1 Roof Roof Acceleration (g) Acceleration (g) 0.5 0.5 El Centro 0 -0.5 -0.5 -1 -1 -1.5 -1.5 10 20 30 n 10 20 30 0 Time (sec) Time (sec) 1.5 1.5 - Table Top Foundation (close to purple curve) 1 1 Roof Acceleration (g) Acceleration (g) 0.5 0.5 0 0 San Fernando -0.5 -0.5 Table -1 -1 Top Foundation (close to black curve) Roof -1.5 -1.5 5 20 25 0 10 15 0 5 10 15 20 25 Time (sec) Time (sec)

52

Seismic tests for structure systems in horizontal direction (Cases 2 and 4)

Main frequency content of earthquake is widely distributed

Harmonic tests for structure systems in vertical direction (Cases 2 and 4)

Frequency is inside frequency band gaps of periodic foundation

Harmonic tests for structure systems in vertical direction (Cases 2 and 4)

Frequency is inside frequency band gaps of periodic foundation

Seismic tests for structure systems in torsional mode (Cases 2 and 4)

With periodic foundation

Earthquake **Bishop**

(Main frequency content of earthquake is inside frequency band gaps of periodic foundation)

Rotational Acceleration (deg/s²) Rotational Acceleration (deg/s²) 120 120 Table Table Top Foundation (close to purple curve) 80 80 Roof Roof 40 40 0 -40 -40 -80 -80 -120 -120 5 15 20 25 5 10 0 10 0 Time (sec) Rotational Acceleration (deg/s²) 60 Rotational Acceleration (deg/s²) 60 Table Table Top Foundation (close to purple curve) 40 40 Roof Roof 20 20 -20 -20 40 40 -60 -60 0 10 20 30 0 10 Time (sec)

With concrete foundation

El Centro

(Main frequency content of earthquake is widely distributed)

Discussions

Effect of frequency band gap on acceleration response

Bishop

Oroville

Effect of frequency band gap on acceleration response

58

Discussions

Bishop

Roof to table relative displacement response

0.4 0.3 with periodic foundation with periodic foundation with concrete foundation 0.2 with concrete foundation Displacement (mm) **Displacement** (mm) 0.2 0.1 0 WWWWWW 0 -0.1 -0.2 -0.2 -0.4 -0.3 5 10 15 20 5 10 15 20 0 0 Time (sec) Time (sec)

25

Oroville

Conclusions

- The basic concept on how to find the frequency band gaps was reviewed.
- A set of design guidelines for periodic foundations was proposed.
- The test specimen of 1D periodic foundation has been constructed, and some tests have been performed.
- The test results show that periodic foundations can effectively reduce the vibration response when the frequency contents of the incoming waves are within the frequency band gap of the periodic foundation supported SMR building.

Thank you for your attention.