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Overview

* NEET1- Advanced Methods
for Manufacturing

* Time line
— Start: October, 2014
— End: September, 2017

» Total project funding from
DOE: $800K

* Technical barrier to address
— Advanced, high-speed and
high-quality welding
technologies
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Objective

* This project aims at developing a welding quality monitoring
and control system based upon multiple optical sensors.

— Enables real-time weld defect detection and adaptive adjustment to
the welding process conditions to eliminate or minimize the formation
of major weld defects.

— Addresses the needs to develop “advanced (high-speed, high quality)
welding technologies” for factory and field fabrication to significantly
reduce the cost and schedule of new nuclear plant construction.
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Principal
 Non-contact optical monitoring system for inspecting each weld pass

» Building a foundation of signal/knowledge database from past experiences
to detect certain types of weld defects

— Temperature field
— Strain/stress field (related to residual stress, distortion, cracks, etc.)
— Weld pool surface profile (related to bead shape, lack of penetration, etc.)

* Close-looped adaptive welding control algorithm will correlate the above
measurement signals to the weld quality and provide feedback control
signals in real time
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Current accomplishments

» System development

— Hardware: cameras, optical illumination and filtering systems,
/O connections, etc.

— Software: hardware control, data acquisition and analysis

* Development of new sensing methods and algorithms
— Novel high-temperature DIC method and algorithm
* Real-time temperature, strain and stress monitoring in HAZ

— Weld pool visualization and surface dynamics
« Defects identification and penetration control
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Novel high-temperature DIC for strain
measurement
* DIC is a noncontact optical method to measure surface strain.

* The application in in-situ welding monitoring has been very
challenging

Challenges _______ solutions _____

Special optical illumination and
filtering system

Intense arc light

Novel speckle patterns survived at
temperature up to the melting
point

Damage/burning of speckle
pattern

SRS AEETel CIn (i EE] Novel stereo (3D) DIC algorithm
surface

Real-time data processing In-house software



Special optical system and high-
temperature speckle”
Arc welding (TIG) - Laser weldlng
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* Basic requirements of DIC algorithm: stable illumination and
stable speckle pattern

— Special illumination and filtering system to greatly suppress the intense
welding arc or laser plume

— Novel speckle pattern survived at temperatures up to the melting point

* J Chen; X Yu, R /G Miller, Z Feng, “In-situ Strain and Temperature Measurement and Modeling during Arc Welding”, Scrence —f
and Technology of Welding and Joining, Volume 20, Issue 3 (March 2015), pp. 181-188



Novel 3D DIC method on specular surface

« Why 3D DIC (stereo camera setup)?

— Large error is expected for 2D DIC (one single camera) setup when out-of-plane
displacement occurs
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* Conventional (commercial) 3D DIC codes does NOT work on specular
metal surface

— Projected speckle pattern to both cameras can be totally different causing issues in
pattern matching

« Novel 3D DIC algorithm and procedure has been developed
— Works for both specular and diffuse surfaces



Beyond strain: real-time sfress calculation

* The evolution of stress is directly correlated to certain weld
attributes/defects (distortion, residual stress, etc.)

* A new algorithm has been integrated to calculate stress in real
time based on in-situ strain and temperature measurements

— Works for both elastic and plastic deformation
— without the complication of numerical models

* The new algorithm is under patent application. Details are not
disclosed herein



Stress calculation

« Algorithm is validated by a simulated welding process
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Weld pool visualization




Defects detection
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Penetration depth by light reflection

Structural light
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Weld pool dynamic model and full
penetration control

Y(k+1)=1.06+Y(k)— 0.098 + u(k)
Y - Image grayness
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Summary

A multi-optical sensing system was integrated and tested
for monitoring arc welding and laser welding processes.

* Novel methods and algorithms were developed for real-
time strain and stress monitoring in HAZ.

» Defects such as lack of fusion and undercutting were
positively identified.

* Penetration depth was correlated to the grayness of the
reflected structural light, based on which a full-
penetration control algorithm was developed.



Next Steps

» Continue to refine and optimize the multi-optical system
(hardware and software).

— To get more reliable signals
— To detect more types of weld defects

» Further develop control algorithms to minimize or avoid the
formation of the detectable defects.

» Build a working prototype system for demonstration.
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