

Advanced Methods for Manufacturing (AMM)

Alison Hahn Program Manager, AMM Office of Nuclear Energy U.S. Department of Energy

October 18, 2016

AMM Vision and Goals

Nuclear Energy

Vision

• To improve the methods by which nuclear equipment, components, and plants are manufactured, fabricated, and assembled by utilizing practices found in industries such as oil, aircraft, and shipbuilding

Goal

- To reduce cost and schedule for new nuclear plant construction
- To make fabrication of nuclear power plant (NPP) components faster, cheaper and more reliable

Consolidated Innovative Nuclear Research Solicitation

Nuclear Energy

Objective: To promote efficiency and the effective use of resources.

Open to Universities, Industry and National Laboratories

Important Dates

• Full Applications Due: February 15, 2017

NSUF-Infrastructure.inl.gov

- FY 2012: 4 awards @ \$3.03M
- FY 2013: 2 awards @ \$0.08M
- FY 2014: 3 awards @ \$2.40M
- FY 2015: 4 awards @ \$3.08M
- FY 2016: 4 awards @ \$2.80M

FINANCIAL ASSISTANCE FUNDING OPPORTUNITY ANNOUNCEMENT	
U. S. Department of Energy Idaho Operations Office Fiscal Year 2015 Consolidated Innovative Nuclear Research Funding Opportunity. Au	
DE-FOA-0001129 Announcement Type: Initial	
CFDA Number: 81.121	

NEET-1 FOA Technical Focus Areas

Nuclear Energy

- 1. Factory and Field Fabrication Techniques
- 2. Advances in Manufacturing Processes for components

4

NSUF-1.2c FOA Technical Focus Area

Nuclear Energy

1. Advanced and innovative manufacturing techniques for irradiation testing to demonstrate performance

5**~**

Additive Manufacturing

- Innovative Manufacturing Process for Nuclear Power Plant Components via Powder Metallurgy and Hot Isostatic Processing Methods – Electric Power Research Institute (complete)
- Laser Direct Manufacturing of Nuclear Power Components Using Radiation Tolerant Alloys – Lockheed Martin (complete)
- Environmental Cracking and Irradiation Resistant Stainless Steel by Additive Manufacturing – General Electric Global Research (10/1/2015 – 9/30/2017)
- Advanced Onsite Fabrication of Continuous Large-Scale Structures Idaho National Laboratory (10/2/2015 – 10/1/2018)

Additive Manufacturing

- Integrated Computational Materials Engineering (ICME) and In-situ Process Monitoring for Rapid Qualification of Components Made by Laser-Based Powder Bed Additive Manufacturing (AM) Processes for Nuclear Structural and Pressure Boundary Applications – Electric Power Research Institute (10/1/2016 – 9/30/2019)
- Development of Nuclear Quality Components Using Metal Additive Manufacturing – RadiaBeam Systems (7/28/2015 – 7/27/2017)
- Enhancing Irradiation Tolerance of Steels via Nanostructuring by Innovative Manufacturing Techniques – Idaho State University (10/1/2016 – 9/30/2021)
- Irradiation Performance Testing of Specimens Produced by Commercially Available Additive Manufacturing Techniques – Colorado School of Mines (10/1/2016 – 9/30/2020)

Welding and Joining Technologies

- Monitoring and Control of the Hybrid Laser-GMAW Process Idaho National Laboratory (complete)
- Improving Weld Productivity and Quality by means of Intelligent Real-Time Close-Looped Adaptive Welding Process Control through Integrated Optical Sensors – Oak Ridge National Laboratory (10/1/2014 – 9/30/2017)

Concrete Materials and Rebar Innovations

- Modular Connection Technologies for SC Walls of SMRs Purdue University (complete)
- Ultra-High-Performance Concrete and Advanced Manufacturing Methods for Modular Construction – University of Houston (complete)
- Self-Consolidating Concrete Construction for Modular Units Georgia Institute of Technology (complete)
- Improvement of Design Codes to Account for Accident Thermal Effects on Seismic Performance – Purdue University (10/1/2014 – 9/30/2017)
- Periodic Material-Based Seismic Base Isolators for Small Modular Reactors – University of Houston (10/1/2014 – 9/30/2017)
- Prefabricated High-Strength Rebar Systems with High-Performance Concrete for Accelerated Construction of Nuclear Concrete Structures – University of Notre Dame (10/1/2015 – 9/30/2018)

Surface Modifications and Cladding Processes

- Advanced surface plasma nitriding for development of corrosion resistance and accident tolerant fuel cladding – Texas A&M University (10/1/2015 – 9/30/2018)
- All-Position Surface Cladding and Modification by Solid-State Friction Stir Additive Manufacturing (FSAM) – Oak Ridge National Laboratory (10/1/2016 – 9/30/2018)

Data Configuration Management

- High speed 3D Data for Configuration Management TetraVue, Inc. (7/28/2015 – 7/27/2016)
- Geo-Referenced, UAV-based 3D Surveying System for Precision Construction – Voxtel, Inc. (complete)

Nuclear Energy

■ AMM program has competitively awarded R&D since FY2012

Areas currently supported include;

- Concrete Technologies
- Additive Manufacturing
- Welding and Joining Innovations
- Surface Modifications and Cladding Processes
- Data Configuration Management

■ New FY 2016 projects were announced June 14, 2016

■ For more information; <u>Alison.Hahn@nuclear.energy.gov</u>