Weather-Informed Systems:

Future Cost-Competitive Electricity Systems and Their Impacts on US CO₂ Emissions

Pandora's Box: Fossil Carbon

Weather is Key to Decarbonization

- A fundamental transformation of the electric power system is underway.
- **D**esign, **O**peration and **M**arkets are currently constructed around "fuels" that are burned.
- Solar and wind resources will power the future. They are weather-driven.
- Atmospheric science should be incorporated at all phases of Design, Operations, and Markets.

Critical Components

Weather

- Electricity Infrastructure
- Electric Demand
- Cost of Technologies

Wind and Solar are Variable Generation

Image Credit: Figure 7.5 in The Atmosphere, 8th edition, Lutgens and Tarbuck, 8th edition, 2001

The variability of wind drops by 5 times when area is increased by three orders of magnitude

Variability here is defined as the average coefficient of variation over a geographic region when divided up into isolated regions

Local Wind Sites Behave The Same Way

Power output behavior compared with its neighbors of variable resources **depends** on its location

NEWS Uses High Resolution Weather Data

NEWS Uses High Resolution Weather Data

5% 26.5% 48%

NEWS Uses High Resolution Weather Data

Critical Components

Weather

Electricity Infrastructure

Electric Demand

Cost of Technologies

NEWS Needs To Know Where Sites Exist

NEWS Selects Transmission Options

Critical Components

- Weather
- Electricity Infrastructure
- Electric Demand
- Cost of Technologies

NEWS Uses Detailed Electricity Demand

NEWS Uses Detailed Electricity Demand

Reminder: The model is *infinitely adaptable*, and so demands can be altered depending on region

Critical Components

- Weather
- Electricity Infrastructure
- Electric Demand
- Cost of Technologies

Models Need Costs Provided As Inputs

NEWS Solves To Find The "Best" System

ALL OTHER EQUATIONS CONSTRAIN THE MAGNITUDE OF ANY OF THE TERMS

See, e.g. C. T. M. Clack, Y. Xie, and A. MacDonald: Linear Programming Techniques for Developing an Optimal Electrical System including High-Voltage Direct Current Transmission and Storage, International Journal of Electric Power and Energy Systems, 68, 103-114, (2015).

A cost-optimal National Electric System

A cost-optimal National Transmission System

Winter Dispatch Stack

Summer Dispatch Stack

A cost-optimal National Electric System

NEWS Selects Transmission Options

A national electric system could be lower cost

Image credit - Nature Climate Change – Figure 2 - http://rdcu.be/f2Dg

Breaking down a national system by Interconnect

A national system state-by-state

A national system could emit less carbon dioxide

Carbon Dioxide Emissions from Electricity Production

A national system state-by-state

A national system could emit less sulphur dioxide and nitrogen oxides

Sulphur Dioxide Emissions from Electricity Production

2014

A national system would consume less water

A national system would employ more people

US Total Electricity Employment

NEWS Result: Geographic Scale and Cost of Technology

NEWS Result: Geographic Scale and Cost of Technology

■ Low-cost RE High-cost NG! ■ Mid-cost RE Mid-cost NG! ■ High-cost RE Low-cost NG

NEWS Result: Sensitivity to Natural Gas

Nuclear! ■ Hydroelectric! ■ Onshore Wind! ■ Offshore Wind! ■ Solar PV! ■ Natural Gas

NEWS Result: Sensitivity to Natural Gas

Nuclear! ■ Hydroelectric! ■ Onshore Wind! ■ Offshore Wind! ■ Solar PV! ■ Natural Gas

NEWS Result: Sensitivity to Natural Gas

Low-cost Renewable

Mid-cost Renewable

High-cost Renewable

Realistic Solutions Do Exist

- The US can reduce carbon dioxide emissions by 80% compared with 1990 levels:
 - ✓ While decreasing the cost of electricity
 - ✓ With a large share of wind and solar
 - ✓ By deploying a national transmission system
 - ✓ By using existing technologies only
 - ✓ Without using storage, biomass or CCS.

Critical Key Findings

- It is not always best practice to place variable generators where the most power potential is.
- A large area system is beneficial for numerous reasons, but particularly to find more valuable sites for variable generation.
- Coordinated planning is more efficient than competition.
- The least cost paths are, at most, 80% variable generation. The last 20% is more appropriately dealt with by another method / technology.

Questions?

NEWS Webpage:

esrl.noaa.gov/gsd/renewable/news-simulator.html

NEWS Results Webpage:

<u>esrl.noaa.gov/gsd/renewable/news-results/#usstudy-2007-lrhg-1</u>

NEWS Results Data:

<u>esrl.noaa.gov/gsd/renewable/news-results/usstudy/</u>

Free Copy of the Nature Climate Change Paper:

http://rdcu.be/f2Dg

Dr Christopher T M Clack

<u>Christopher.Clack-1@colorado.edu</u> <u>chrisclack@hotmail.com</u>

colorado.academia.edu/ChristopherClack researchgate.net/profile/Christopher_Clack2 linkedin.com/in/clacky007 twitter.com/clacky007

(mile)

Transmission capacity constraint

Planning reserve requirement constraint

$$\mathcal{B}_{\omega}^{n-} \cdot \sum_{\mu} \left(b_{\mu\omega}^{c} \cdot \mathcal{N}_{\mu\tau} \right) \leq \sum_{\mu} b_{\mu\omega}^{c} \cdot N_{\mu\tau} \leq \mathcal{B}_{\omega}^{n+} \cdot \sum_{\mu} \left(b_{\mu\omega}^{c} \cdot \mathcal{N}_{\mu\tau} \right)$$

$$\mathcal{B}_{\omega}^{h-} \cdot \sum_{\mu} \left(b_{\mu\omega}^{c} \cdot \mathcal{H}_{\mu\tau} \right) \leq \sum_{\mu} b_{\mu\omega}^{c} \cdot H_{\mu\tau} \leq \mathcal{B}_{\omega}^{h+} \cdot \sum_{\mu} \left(b_{\mu\omega}^{c} \cdot \mathcal{H}_{\mu\tau} \right)$$

Nuclear and hydroelectric dispatch constraints

$$\mathcal{B}_{\phi\kappa}^{v-} \leq V_{\phi\kappa} \leq \mathcal{B}_{\phi\kappa}^{v+}, \quad \forall \ \phi, \kappa$$

Wind and solar siting constraint

$$0 \le G_{\mu} \le \mathcal{B}_{\mu}^{g}, \quad \forall \ \mu$$

Conventional Generation siting constraint