

ALTERNATIVE JET FUEL LCA WITH THE GREET[®] MODEL

MICHAEL WANG AND JEONGWOO HAN

Systems Assessment Group Energy Systems Division Argonne National Laboratory

Sept. 14, 2016

The GREET[™] (<u>Greenhouse gases, Regulated Emissions, and Energy</u> use in <u>Transportation</u>) model

GREET outputs include energy use, greenhouse gases, criteria pollutants and water consumption for vehicle and energy systems

Energy use

- > Total energy: fossil energy and renewable energy
 - Fossil energy: petroleum, natural gas, and coal (they are estimated separately)
 - Renewable energy: biomass, nuclear energy, hydro-power, wind power, and solar energy

□ Greenhouse gases (GHGs)

- \succ CO₂, CH₄, N₂O, and black carbon
- $> CO_{2e}$ of the three (with their global warming potentials)

□ Air pollutants

- \succ VOC, CO, NO_x, PM₁₀, PM_{2.5}, and SO_x
- They are estimated separately for
 - Total (emissions everywhere)
 - Urban (a subset of the total)

Water consumption

Aviation fuel and aircraft options in GREET

Fuels and Feedstocks

 Petroleum Jet Fuel Conventional Crude Oil Sand Pyrolysis Oil Jet Fuel Crop Residues Ecrect Residues 	 Hydrotreated Fuel Soybeans Palm Oil Rapeseeds Jatropha Camelina Algae 	 Renewable Jet Ethanol-To-Jet Corn Crop Residues Forest Residues 	5	 Passenger Aircraft Single Aisle Small Twin Aisle Large Twin Aisle Large Quad Regional Jet Business Jet
Forest Residues			es	
 Dedicated Energy Cro Fischer-Tropsch J North American Na Non-North America Renewable Natura 	et Fuel atural Gas an Natural Gas I Gas	 Dedicated Energy Crops Sugar-To-Jet Crop Residues Forest Residues Dedicated Energy 	ergy	 Freight Aircraft Single Aisle Small Twin Aisle Large Twin Aisle Large Quad
➢ Shale Gas				
 > Biomass via Gasification > Coal via Gasification > Coal/Biomass via Gasification > Natural Gas/Biomass via Gasification 		 Per MJ of fuel Per kg-km With data from With data from Per passenger-kmDOT Volpe Content 		of fuel km With data from ssenger-kmDOT Volpe Cente
				_

Aircraft Types

Key factors for alternative jet fuel LCA

Feedstocks

- ✓ Oil seeds
- ✓ Cellulosic biomass
- ✓ Starch/sugar via ATJ/STJ
- ✓ Algae
- Conversion technologies
 - ✓ HEFA
 - ✓ FT synthesis/pyrolysis
 - ✓ Advanced fermentation
- System boundary
- Co-product methods
- Land use changes and other indirect effects

Bio-oil-based jet fuels (HRJ) pathway system boundary (Soybean feedstock shown as example)

Carbon cycle via photosynthesis provides key CO₂ benefits with biofuel pathways

Co-products in the bio-aviation fuel pathways

Note: DGS denotes Distillers' Grains with Solubles. Other fuels include fuel gas, naphtha and distillates

Choice of co-product methods can have significant LCA effects for biofuels

WTWa GHG emissions of alternative jet fuels LCA functional unit: per MJ of fuel consumption

- LUC-related emissions are not included
- Other key factors: Technology readiness level (TRL), production costs, resource availability and fuel types

Land use change GHG emissions modeling in GREET

Carbon Calculator for Land Use Change from Biofuels (CCLUB)

CCLUB estimates LUC CO₂ emissions for corn and herbaceous biomass

Conclusions

- □ Feedstock is a key driver of LCA results for RJF
- LCA system boundary has been expanded in the past 8 years to include indirect effects
- Co-product issue is related to functional unit of LCA; co-product method is an accounting issue (artifact??)
- □ How to treat trade-offs among energy, GHG, air emissions, and water use attributes for different fuel systems?
- LUC emission modeling continue to advance
- Biomass additionality and carbon neutrality for biofuels are hotly debated now

