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Assessment of AJF technologies  

Lifecycle assessment (LCA) - quantifies GHG emissions of full fuel supply chain 

to estimate net climate change benefit of AJF vs. petroleum-derived jet fuel 

Techno-economic assessment (TEA) - quantifies fuel production cost, for 

comparison to the cost of petroleum-derived jet fuel 

 

Process-based, pathway specific methods of technology assessment 

Cultivation Harvesting Transport Extraction Refining Transportation 
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Results of TEA and LCA analyses 
(per unit of fuel) 

The impacts of large-scale AJF deployment aren’t captured. 
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Preliminary results - do not cite or quote. 
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Aviation industry GHG reductions from AJF 

To what degree can AJF contribute to mitigating GHG emissions 
from the aviation industry in the near- and long-term? 
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Aviation industry GHG reductions from AJF 

Near-term (2020): 0-2% (0-150k bpd) global jet fuel demand could 
be satisfied by AJF à GHG emissions reductions of 0-1.3% 

•  Based on AJF production facilities that are planned or under 
construction 

•  High end only achievable if green diesel blends are approved for jet 
engines 

Long-term (2050): 0-100% (0-19,000k bpd) global jet fuel demand 
could be satisfied by AJF à GHG emissions reductions of 0-63% 

•  Based on potential availability of feedstock 

•  Accounting for LC emissions from AJF supply chain & land use 
change (LUC) 

Preliminary results - do not cite or quote. 
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Scale-up of AJF production 

Reduction in annual 
aviation GHG 

emissions in 2050 

AJF production capacity 
 in 2050 [Mbpd] 

Required growth in AJF production capacity 

Number of new biorefineries/yr Capital investment/yr 

2% 0.64 10 $1B - $3B 

10% 2.8 40 $3B - $14B 

17% 4.7 70 $6B - $25B 

40% 12.3 170 $15B - $60B 

63% 18.7 260 $20B - $90B 

Average historical ethanol  
and biodiesel production 

Total annual volumes (Mbpd) 0.22 (1975-2000) to 0.99 (2001-2011) 

 

63% 18.7 260 $20B - $90B 

Average historical ethanol  
and biodiesel production 

Total annual volumes (Mbpd) 0.22 (1975-2000) to 0.99 (2001-2011) 

Number of new biorefineries/yr   5 (1975-2000) to 60 (2001-2011) 

Projection for average annual investment in petroleum refining in 2035 $55B 

 
•  In order to achieve 10-20% reductions in aviation GHG emissions, AJF production capacity 

requires significant and continuing investment and growth between now and 2050 

•  Ultimately, AJF production capacity would have to be many times greater than current 
global biofuel production capacity 

Preliminary results - do not cite or quote. 
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Potential impacts of AJF production scale-up 

Rapid and sustained expansion of AJF production could 
have impacts not captured by TEA and LCA studies: 

 
•  Learning-by-doing of nascent technologies 

[Goldemberg et al. 2004, Newes et al. 2012, Vimmerstedt et al. 2015] 

•  Land use change (LUC) emissions 

•  Changes in demand for aviation services 
[Winchester et al. 2015) 

•  Air quality impacts 
[Speth et al. 2015, Barrett et al. 2012] 
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Future research on AJF production scale-up 

Evaluation of the environmental and economic impacts of AJF 
scale-up requires: 

•  Continued characterization of technology performance (process-based 

analyses), and 

•  Quantification of industry- or system-level impacts 

A key challenge is understanding the relationship between the 
degree of AJF production scale-up, and aggregate impacts. 

•  Not necessarily linear 
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