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Background

• Globally, aviation is projected to grow by ~5% per year 

[Mahabashde et al, 2011]

• IEA forecasts petroleum to remain a significant primary 

energy source out to 2040 [IEA WEO, 2015]

• Understanding petroleum’s complete environmental impact is 

important

o Well-to-pump emissions constitute ~20% 

of petroleum jet fuel lifecycle emissions

o LCA of conventional fuels in needed to 

compare alternative fuels
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LCA Model – Emissions Sources
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Regional Variation of WTP Emissions
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Past and Near Future
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2050 Approach

Identify key drivers of emissions 
over petroleum lifecycle

Survey literature for projections on 
how these factors may change by 
2050

Create scenarios to represent 
different coherent futures using 
various factors 

Calculate emissions using LCA 
Model

Iterate
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Scenario Descriptions

• Different futures are conceptualized, with policies used to 

reflect the approach taken towards environmental issues

Current 
Policies

• Use of unconventional 
resources 
unrestricted

• Electricity & hydrogen 
production remain 
carbonized 

• Demand for 
petroleum products 
unabated

Moderate 
New Policies

• Use of unconventional 
resources moderately 
restricted

• Electricity & hydrogen 
production 
moderately 
decarbonized

• Diesel demand is 
reduced at a faster 
pace than jet fuel

Strong New 
Policies

• Use of unconventional 
resources strongly 
restricted and 
emissions reduced

• Electricity & hydrogen 
production heavily 
decarbonized

• Demand for all 
petroleum products 
strongly reduced
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Conclusions 

• WTP emissions contribute ~20% of WTW emissions for 

petroleum-derived jet fuel

• This work informed ICAO CAEP in its adoption of the 

reference value for international jet fuel (89 g CO2/MJ)

• Long-term future emissions are largely dependent on policies 

(within and beyond petroleum industry)

• With current polices, operations are on track to increase WTP 

emissions by 2.5 g CO2e/MJ above 2012 levels

• Adoption of de-carbonization measures may help to reduce 

2050 WTP emission by 2.4 g CO2e/MJ below 2012 levels

• This work was sponsored by the FAA through the

ASCENT Center of Excellence (Project 32); Work

presented may not represent the views of the FAA
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