

## 700 bar Type IV H2 Pressure Vessel Cost Projections

Brian D. James and Cassidy Houchins

Department of Energy Physical-Based Hydrogen Storage Workshop: Identifying Potential Pathways for Lower Cost 700 Bar Storage Vessels

24 August 2016 USCAR, Southfield, MI

# **Objective**

- Overview assumptions & results of latest cost analyses
- Categorize potential pathways for cost reduction
- Provide framework and reference base for workshop discussions

# Outline

- System design
- Cost analysis methodology
- Cost projections
- Key opportunities for cost reduction
- Recent focus areas
  - Composites
  - BOP
  - Winding time

# **System Diagram**

- System cost based on a single tank configuration
- Balance of tank includes:
  - Integrated in-tank valve
  - Integrated pressure regulator block

#### **Cost Reduction Strategies:**

- System simplification
- Multi-functionality
- Part standardization



## **Approach:**

## SA's DFMA<sup>®</sup> - Style Costing Methodology

- DFMA<sup>®</sup> (Design for Manufacture & Assembly) is a registered trademark of Boothroyd-Dewhurst, Inc.
  - Used by hundreds of companies world-wide
  - Basis of Ford Motor Co. design/costing method for the past 20+ years
- SA practices are a blend of:
  - "Textbook" DFMA<sup>®</sup>, industry standards and practices, DFMA<sup>®</sup> software, innovation, and practicality

#### Estimated Cost = (Material Cost + Processing Cost + Assembly Cost) x Markup Factor



## **Manufacturing Flow Diagram**

#### 700 bar, Type IV Pressure Vessel Systems



\*Black indicates processes assumed for production at 500k systems/year

## **System Bill of Materials** (700 bar, 5.6kgH<sub>2</sub> usable, Single Vessel)

|                              |           | Single-Tank Configuration |            |            |            | Dual-Tank Configuration |            |            |            |            |                   |
|------------------------------|-----------|---------------------------|------------|------------|------------|-------------------------|------------|------------|------------|------------|-------------------|
|                              |           | 10,000                    | 30,000     | 80,000     | 100,000    | 500,000                 | 10,000     | 30,000     | 80,000     | 100,000    | 500,000           |
| Liner Blow Mold              | \$/kWh    | \$0.27                    | \$0.15     | \$0.11     | \$0.10     | \$0.10                  | \$0.31     | \$0.18     | \$0.14     | \$0.14     | \$0.14            |
| Cost/tank                    | \$/tank   | \$51.38                   | \$27.60    | \$20.16    | \$19.27    | \$17.84                 | \$28.61    | \$16.72    | \$13.01    | \$12.67    | \$12.64           |
| Liner Annealing              | \$/kWh    | \$0.17                    | \$0.06     | \$0.03     | \$0.04     | \$0.03                  | •          | \$0.07     | \$0.06     | \$0.05     | \$0.05            |
| Cost/tank                    | \$/tank   | \$31.40                   | \$11.39    | \$5.78     | \$7.74     | \$5.65                  | \$22.51    | \$6.59     | \$5.36     | \$4.71     | \$4.42            |
| Fiber Winding (Wet Winding)  | \$/kWh    | \$11.72                   | \$11.70    | \$10.86    | \$10.35    | \$10.04                 |            | \$11.62    | \$10.79    | \$10.28    | \$9.96            |
| Cost/tank                    | \$/tank   | \$2,192.19                | \$2,187.45 | \$2,030.42 | \$1,934.75 | \$1,877.09              | \$1,088.37 | \$1,086.00 | \$1,009.18 | \$960.93   | \$930.97          |
| B-Stage Cure (Cure #1)       | \$/kWh    | \$0.09                    | \$0.03     | \$0.02     | \$0.03     | \$0.02                  | -          | \$0.05     | \$0.04     | \$0.04     | \$0.04            |
| Cost/tank                    | \$/tank   | \$16.59                   | \$5.16     | \$4.23     | \$4.79     | ,                       | ,          | \$4.92     | \$3.99     | \$3.99     | \$3.38            |
| Tank Shoulder Foam           | \$/kWh    | \$0.09                    | \$0.07     | \$0.06     | \$0.06     | \$0.06                  |            | \$0.08     | \$0.07     | \$0.07     | \$0.07            |
| Cost/tank                    | \$/tank   | \$16.00                   | \$12.28    | \$11.12    | \$10.98    |                         |            | \$7.39     | \$6.81     | \$6.74     | \$6.67            |
| Full Cure                    | \$/kWh    | \$0.34                    | \$0.06     | \$0.04     | \$0.05     |                         | -          | \$0.08     | \$0.07     | \$0.07     | \$0.06            |
| Cost/tank                    | \$/tank   | \$63.95                   | \$12.09    | \$6.94     | \$8.79     | ,                       |            | \$7.34     |            | \$6.93     | \$5.61            |
| Boss                         | \$/kWh    | \$0.19                    | \$0.15     | \$0.14     | \$0.13     | \$0.13                  | -          | \$0.31     | \$0.28     | \$0.27     | \$0.27            |
| Cost/tank                    | \$/tank   | \$35.68                   | \$28.90    | \$25.91    | \$25.21    | \$24.90                 |            | \$28.90    | \$25.91    | \$25.21    | \$24.90           |
| Hydro Test                   | \$/kWh    | \$0.08                    | \$0.05     | \$0.04     | \$0.04     | \$0.04                  |            | \$0.09     | \$0.09     | \$0.08     | \$0.08            |
| Cost/tank                    | \$/tank   | \$14.92                   | \$8.76     | \$7.99     | \$7.52     | \$7.52                  |            | \$8.76     |            | \$7.52     | \$7.49            |
| He Fill & Leak Test          | \$/kWh    | \$0.28                    | \$0.11     | \$0.09     | \$0.08     | \$0.08                  |            | \$0.23     | \$0.18     | \$0.16     | \$0.15            |
| Cost/tank                    | \$/tank   | \$52.68                   | \$21.17    | \$17.23    | \$14.86    |                         |            | \$21.17    | \$17.23    | \$14.86    | \$13.60           |
| Balance of Plant (BOP) Items | \$/kWh    | \$9.65                    | \$6.76     | \$5.33     | \$5.01     | \$3.48                  | •          | \$8.82     | \$6.95     | \$6.54     | \$4.59            |
| Cost/system                  | \$/system | \$1,804.23                | \$1,264.37 | \$997.47   | \$935.88   |                         | \$2,334.70 | . ,        | \$1,300.24 | . ,        | \$857.41          |
| System Assembly              | \$/kWh    | \$0.06                    | \$0.05     | \$0.05     | \$0.05     | \$0.05                  | -          | \$0.06     | \$0.06     | \$0.06     | \$0.06            |
| Cost/system                  | \$/system | \$10.47                   | \$9.61     | \$9.50     | \$9.44     |                         |            | \$12.00    |            | \$12.00    | \$12.00           |
| Total System Cost            | \$/kWh    | \$22.94                   | \$19.19    | \$16.78    | \$15.93    | \$14.07                 | \$26.02    | \$21.58    | \$18.74    | \$17.77    | \$15.45           |
| Total System Cost            | \$/system | \$4,289.49                | \$3,588.77 | \$3,136.75 |            | \$2,630.22              |            | \$4,035.98 |            | \$3,322.66 |                   |
| Tank Cost                    | \$/kWh    | \$13.24                   | \$12.38    | \$11.39    | \$10.88    | \$10.54                 | \$13.47    | \$12.70    | \$11.72    | \$11.16    | \$10.80           |
| Cost per Tank                | \$/tank   | \$2,474.80                | \$2,314.79 | \$2,129.77 | \$2,033.92 | \$1,970.27              | \$1,259.50 | \$1,187.79 | \$1,095.78 | \$1,043.57 | <b>\$1,009.67</b> |

## System Cost vs. Manufacturing Rate



7

**Cost Reduction Strategies:** 

- Increase production rate
- Single tank instead of multiple tanks

## Status and Key Areas for Cost Reduction

#### 500k Systems per year: \$14.07/kWh





Fiber and BOP costs dominate

Cost reductions should address:

#### Carbon Fiber

- Reduced CF costs (e.g. precursor or processing cost reductions)
- Improved material utilization (e.g. winding patterns)
- BOP
  - Increased component integration
  - Parts reduction
- Winding time not a large cost contributor

# **Carbon Fiber Production Costs**

|                                                    |             | 20k vehicles | 350k vehicles |
|----------------------------------------------------|-------------|--------------|---------------|
|                                                    | Units       | per year     | per year      |
| Precursor Production Capacity (single large plant) | tonnes/year | 7,500        | 7,500         |
| Precursor Required for CF Production Volume        | tonnes/year | 3,300        | 55,000        |
| Precursor Cost (spun PAN fibers)                   | \$/kg       | \$6.42       | \$6.42        |
| Ratio of Precursor to CF                           | kg/kg       | 2.2          | 2.2           |
| CF Production Volume                               | tonnes/year | 1,500        | 25,000        |
| Cost of Precursor per kg CF                        | \$/kg CF    | \$14.12      | \$14.12       |
| CF Processing Cost                                 | \$/kg CF    | \$15.32      | \$11.49       |
| CF Cost (no markup)                                | \$/kg       | \$29.44      | \$25.61       |

- Precursor production is under-sized at high CF production volume
- Precursor cost contributes ~50% of the total CF cost

#### **Cost Reduction Strategies:**

- Reduce precursor material cost (\$/kg)
- Increasing precursor to CF conversion efficiency (kg precursor/kgCF)
- Increase production volumes (economies of scale)

# Composite Reduction Through Material Utilization

| Winding | Resin       | <b>CF Volume</b> | Composite | Tank     | BOP&     | Total          |       |
|---------|-------------|------------------|-----------|----------|----------|----------------|-------|
| Pattern |             | Fraction         | Mass      | Cost     | Assembly | Cost           |       |
|         | 0<br>       | [%]              | [kg]      | [\$/kWh] | [\$/kWh] | [\$/kWh]       |       |
| PNNL/HL | Epoxy       | 60               | 106.6     | 12.06    | 3.53     | 15.59<br>14.86 | -4 7% |
| Toyota  | Epoxy       | 60               | 99.9      | 11.33    | 3.53     | 14.86 5        |       |
| PNNL/HL | Vinyl Ester | 64.7             | 97.0      | 11.04    | 3.53     | 14.57<br>14.07 | -3.4% |
| Toyota  | Vinyl Ester | 64.7             | 92.3      | 10.54    | 3.53     | 14.07 5        |       |

#### **Toyota cost reduction strategies:**

- Eliminate high-angle helical windings using an alternate liner geometry with sharp transitions from cylinder to dome
- Alternate winding scheme with
  - $\circ~$  One helical layer over the entire liner
  - Concentrated hoop winding over the cylinder
  - Hoop/helical winding over cylinder and dome
- Alternate boss design with a smaller diameter boss and longer flange
- Higher strength T720 vs T700 CF (cost impact not currently modeled)

## Composite Reduction Through Reduced Fiber and Manufacturing Variations

| Nominal Fill               | $V_{Manufacturing}^{2} + COV_{Fiber}^{2}$ | •<br>nt      | Limited te<br>line produ<br>fiber COV<br>kg of CF (<br>Fiber varia | est samp<br>action h<br>s of 7%<br>\$0.85/k<br>ations a | <sub>ber</sub> of 3.3%<br>ples from pilot<br>ave shown hig<br>adding almost<br>Wh)<br>re expected to<br>roduction scale | 6 |
|----------------------------|-------------------------------------------|--------------|--------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---|
| 5,000 10,000 15,000<br>Pre | 20,000 25,000 30,000<br>essure (psi)      | Co<br>•      | st Reducti<br>R&D to lo<br>winding a<br>manufact<br>Lower Sat      | ower CO<br>and/or d<br>are                              | V during tank<br>during CF                                                                                              |   |
|                            | Fiber                                     | COV<br>(mfg) | COV<br>(fiber)                                                     | 3σ                                                      | System Cost                                                                                                             |   |
| SA Baseline                | ORNL CF from PAN-MA precursor             | 3.3%         | 3.3%                                                               | 14.0%                                                   | \$14.57/kWh                                                                                                             |   |
| <b>Observed COV</b> Fiber  | ORNL CF from PAN-MA precursor             | 3.3%         | 7.0%                                                               | 23.2%                                                   | \$15.42/kWh                                                                                                             |   |
| High COV <sub>Fiber</sub>  | ORNL CF from PAN-MA precursor             | 3.3%         | 11.6%                                                              | 36.0%                                                   | \$16.61/kWh                                                                                                             |   |
| Tank with T-700            | T-700                                     | 3.3%         | 3.3%                                                               | 14.0%                                                   | \$16.61/kWh                                                                                                             |   |

# Integrated BOP functionality and lower cost materials reduce system cost





|                             | Part Count                      | 10k sys/yr<br>[\$/kWh] | 500k sys/yr<br>[\$/kWh] |
|-----------------------------|---------------------------------|------------------------|-------------------------|
| Integrated In-Tank Valve    | 9 (integrated into single unit) | 2.40                   | 0.96                    |
| Integrated Regulator        | 9 (integrated into single unit) | 3.13                   | 1.12                    |
| Other (tubing, mount, etc.) | 15                              | 4.12                   | 1.40                    |
| Total                       | 33                              | 9.65                   | 3.48                    |

# Additional BOP Adds ~\$1.50/kWh for Two-Tank Configuration

|                                                              | Single-Tank<br>[\$/kWh] | Two-Tank<br>[\$/kWh] |
|--------------------------------------------------------------|-------------------------|----------------------|
| Integrated Regulator                                         | \$0.96                  | \$1.75               |
| Integrated In-Tank Valve                                     | \$1.12                  | \$1.12               |
| Other Components<br>(Tubing, Fittings, Mounting Frame, TPRD) | \$1.40                  | \$1.72               |
| Total                                                        | <b>\$3.48</b>           | <b>\$4.59</b>        |

#### **Cost Reduction Strategies:**

- System simplification
- Single vs. multiple tanks
- Multi-functionality
- Part standardization
- Share valve among tanks
- Lower cost polymers/alloys

### Increasing Winding Speed Leads to Modest Cost Reductions

- Winding is ~5.5% of system cost for current model at 26 m/min
- System cost reductions possible (~2-4%) by increasing winding speed
- One winding line can supply around 1,500 tanks per year
  - 300 production lines required for 550k systems/year
  - Reduction in # of prod. lines is compelling reason alone to increase speed
- Manufacturing floor space and labor would be the main savings from improving winding speed

**Cost Reduction Strategies:** 

- Decrease winding time (limited savings)
- Advanced forming techniques (perhaps something radically different)



# **Summary**

#### **Carbon fiber**

- Largest single cost item at all volumes studied (45% 62% of system cost)
- The cost of precursor and of converting the precursor to carbon fiber contribute approximately equally to the finished carbon fiber cost
- Strategies to address CF cost could include reduction in
  - Precursor cost
  - Time to convert precursor fibers to CF
  - Total precursor required
- Fiber variations must be controlled in new fiber development programs

#### **Balance of Plant**

- Further part count reduction through component integration
- Lower cost materials

#### Manufacturing

 Increased winding speed will not have a significant impact on system cost, but would address the significant time to manufacturing tanks

|                             | Summary of Cost Reduction Strategies |                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|-----------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| System                      |                                      | System simplification to reduce part counts and reduce manufacturing cost                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| Pressure<br>Vessel          | Carbon<br>Fiber/Composite            | <ul> <li>Reduce CF precursor cost \$/kg</li> <li>New materials with lower \$/kg</li> <li>Reduce CF usage</li> <li>Increase strength/performance         <ul> <li>Stronger fibers</li> <li>Higher translation</li> </ul> </li> <li>High temperature resins to allow fast fill temperature rise</li> </ul>                                                                    |  |  |  |  |  |  |  |
|                             | Manufacturing                        | <ul> <li>Advanced forming techniques</li> <li>Something radically different</li> <li>Fast cure and/or low cost resins</li> <li>Lower manufacturing COV</li> <li>Lower Safety Factor (demonstrate safety at lower SF)</li> <li>Increase production rate, market size</li> <li>Decrease winding time (limited savings)</li> <li>Multi-head winding, pre-preg, etc.</li> </ul> |  |  |  |  |  |  |  |
| Balance of<br>Plant         |                                      | <ul> <li>Multi-functional components</li> <li>Lower cost metals/materials-of-construction</li> <li>Standardized equipment</li> <li>Port sizes/diameters, connection type, material selection, etc.</li> </ul>                                                                                                                                                               |  |  |  |  |  |  |  |
| Refueling<br>Infrastructure | Functionality<br>Placement           | <ul> <li>Better utilization and lower cost if placed at station rather than placed on vehicle</li> <li>Sensors, pumps, electronics, heat exchangers , etc.</li> </ul>                                                                                                                                                                                                       |  |  |  |  |  |  |  |
|                             | Innov. Refueling<br>Concepts         | <ul> <li>Systems that efficiently pre-cool hydrogen</li> <li>Systems that can handle flow rate surge of fast filling</li> </ul>                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
| 16                          | PV Insulation                        | <ul> <li>Avoid vacuum insulation (that require gas tight welds and/or maintenance)</li> <li>Develop low-k (and inexpensive) insulation</li> <li>Develop automated insulation lay-up techniques</li> <li>Load bearing vs. non-load bearing insulation</li> </ul>                                                                                                             |  |  |  |  |  |  |  |

# **Backup Slides**

## System Cost Breakdown



# **BOP Bill of Materials**

|                                               |                | S       | Single-Ta | nk Conf      | iguration    | า       |         | Two-Tai | nk Confi | guration |         |
|-----------------------------------------------|----------------|---------|-----------|--------------|--------------|---------|---------|---------|----------|----------|---------|
| Annual Manufacturing Rate                     | Sys/Year       | 10,000  |           |              |              | 500,000 |         | 30,000  |          | 100,000  | 500,000 |
|                                               |                |         | _         |              |              |         |         |         |          |          |         |
| Integrated In-Tank Valve                      | Per Tank       | \$447   | \$325     | \$261        | \$247        | \$178   | \$759   | \$563   | \$458    | \$437    | \$327   |
| TPRD (1)                                      | Per Tank       | \$31    | \$27      | \$23         | \$22         | \$16    | \$62    | \$53    | \$46     | \$44     | \$33    |
| Excess Flow Valve (1)                         | Per Tank       | \$40    | \$32      | \$28         | \$27         | \$21    | \$80    | \$64    | \$55     | \$53     | \$41    |
| Filter (1)                                    | Per Tank       | \$27    | \$22      | \$20         | \$19         | \$16    | \$54    | \$45    | \$40     | \$39     | \$32    |
| Manual Override (1)                           | Per Tank       | \$6     | \$5       | \$5          | \$5          | \$5     | \$12    | \$11    | \$10     | \$10     | \$10    |
| Temperature Sensor (1)                        | Per Tank       | \$43    | \$29      | \$21         | \$20         | \$12    | \$87    | \$58    | \$42     | \$39     | \$25    |
| Auto Solenoid Valve (1)                       | Per Tank       | \$105   | \$77      | \$64         | \$62         | \$48    | \$211   | \$154   | \$128    | \$123    | \$97    |
| Valve Body (1)                                | Per Tank       | \$19    | \$16      | \$15         | \$15         | \$14    | \$38    | \$32    | \$30     | \$30     | \$27    |
| Insulated Leadwire Sealing Fitting (1)        | Per Tank       | \$29    | \$20      | \$15         | \$13         | \$8     | \$59    | \$40    | \$29     | \$27     | \$16    |
| Valve Integration and Test (1)                | Per Tank       | \$9     | \$8       | \$8          | \$8          | \$7     | \$18    | \$17    | \$16     | \$16     | \$15    |
| Check Valve (1)                               | Per System     | \$44    | \$29      | \$21         | \$19         | \$11    | \$44    | \$29    | \$21     | \$19     | \$11    |
| High Pressure Transducer (1)                  | Per System     | \$94    | \$60      | \$41         | \$37         | \$20    | \$94    | \$60    | \$41     | \$37     | \$20    |
| Integrated Pressure Regulator                 | Per System     | \$586   | \$396     | \$327        | \$302        | \$209   | \$586   | \$396   | \$327    | \$302    | \$209   |
| Integrated Pressure Regulator Block           | Per System     | \$33    | \$10      | \$12         | \$11         | \$8     | \$33    | \$10    | \$12     | \$11     | \$8     |
| Pressure Regulator (1)                        | Per System     | \$204   | \$164     | \$164        | \$153        | \$127   | \$204   | \$164   | \$164    | \$153    | \$127   |
| PRV (1)                                       | Per System     | \$92    | \$58      | \$39         | \$35         | \$18    | \$92    | \$58    | \$39     | \$35     | \$18    |
| Low Pressure Transducer (1)                   | Per System     | \$55    | \$35      | \$24         | \$22         | \$13    | \$55    | \$35    | \$24     | \$22     | \$13    |
| Manual Defuel Valve incl. "Defuel Recep." (1) | Per System     | \$87    | \$55      | \$37         | \$34         | \$17    | \$87    | \$55    | \$37     | \$34     | \$17    |
| Low Pressure Automated Shutoff Valve (1)      | Per System     | \$115   | \$74      | \$51         | \$47         | \$26    | \$115   | \$74    | \$51     | \$47     | \$26    |
| Other (tubing, mount, etc.)                   | Per System     | \$770   | \$541     | \$413        | \$387        | \$262   | \$991   | \$688   | \$518    | \$485    | \$321   |
| Fuel Tank Controller (1)                      | Per System     | \$138   | \$117     | \$101        | \$97         | \$76    | \$138   | \$117   | \$101    | \$97     | \$76    |
| Pipings/Fittings for first tank               | Per System     | \$91    | \$68      | \$61         | \$59         | \$51    | \$91    | \$68    | \$61     | \$59     | \$51    |
| Pipings/Fittings per additional tank          | per addtl tank | \$0     | \$0       | \$0          | \$0          | \$0     | \$35    | \$30    | \$27     | \$26     | \$23    |
| Plug and TPRD (1)                             | Per tank       | \$140   | \$89      | \$59         | \$54         | \$28    | \$280   | \$177   | \$118    | \$108    | \$55    |
| Fill Receptacle (incl. IR Transmitter) (1)    | Per System     | \$195   | \$124     | \$83         | \$76         | \$40    | \$195   | \$124   | \$83     | \$76     | \$40    |
| Mounting Frame (1)                            | Per Tank       | \$45    | \$29      | \$19         | \$17         | \$9     | \$91    | \$58    | \$38     | \$35     | \$18    |
| Miscellaneous                                 | Per System     | \$161   | \$114     | \$90         | \$84         | \$58    | \$161   | \$114   | \$90     | \$84     | \$58    |
| BOP Subtotal                                  | \$/System      | \$1,804 | \$1,264   | <b>\$997</b> | <b>\$936</b> | \$651   | \$2,335 | \$1,648 | \$1,300  | \$1,224  | \$857   |
| BOP Subtotal                                  | \$/kWh         | \$9.65  | \$6.76    | \$5.33       | \$5.01       | \$3.48  | \$12.49 | \$8.82  | \$6.95   | \$6.54   | \$4.59  |

## Accomplishments & Progress: 700 bar type IV H<sub>2</sub> storage system cost reduction identified



\*Cost at 500,000 systems per year





#### STRATEGIC ANALYSIS

22