REGIONALISM Managing Water in the West

Water Energy Nexus

Tribal Renewable Energy Workshop 9/8/2016

U.S. Department of the Interior Bureau of Reclamation

Water Energy Nexus

Climate Change and Hydropower

Climate Change Challenges:

- Drought and other Extreme Weather Events
- Changes in seasonal precipitation patterns
- Increase in air temperatures and energy demand
- These changes will exacerbate existing pressures on water and power resources that are inexorably linked

Water Energy Nexus

Climate Change and Hydropower

- Hydropower can be part of the Climate Change solution
 - Low GHG Emitting Resource
 - Can be used to help integrate other renewables into the grid
 - Flexible and on demand resource
- But there are challenges from changes to hydrology
 - Loss of total generation
 - Loss of regulation capacity
 - Increased rough zones
 - Increased maintenance

United States Hydropower Generation (GWh)

Reclamation Hydropower Generation (GWh)

■ Reclamation Net Generation (GWh)

Colorado River System Generation (GWh)

■ Colorado River System Net Generation (GWh)

What is Reclamation Doing?

- Capital and Operational Improvements
 - Gaining Efficiencies
- Policy Development and Research
 - Identifying new opportunities

Desired outcome: more flexible, resilient, and effective water resource projects

Reclamation Wide Turbine Replacements and Rewinds

- Generator Uprates/Rewinds
 - 3 rewinds completed in 2013
 - 2 rewinds completed in 2015
 - 3 rewinds ongoing
 - Many more in the out years
- Turbine Replacements
 - 31 turbine replacements since 2009
 - 3 7% efficiency gain
 - Wider head range
 - 319,122 MWh/year
 - 4 ongoing replacement projects
 - 5 scheduled replacement projects

Hoover Wide Head Turbines

- Increase available operation ranges (flexibility)
- Minimize rough zones
- Increase unit efficiency and capacity
- Increase power output at lower lake elevations
- Less water More Power
- Five wide head turbines installed by FY17
- ~ 3% efficiency gains

Optimization at Reclamation

- What is Optimization?
 - Continuous computer modeling to determined the best way to operate a hydroelectric powerplant to achieve desired power production using the least amount of water.
- Increases Efficiency
 - Uses Less Water at Same Power Output Level
 - Or Increase Generation Levels Use Same Amount of Water
- When All Reclamation Plants are Optimized
 - 1% 3% Efficiency Gains
 - 410,000 MWh 1,230,000 MWh
 - \$10.3M \$30.8M Annually (at \$25 per MWh)

 New Opportunities: Resource Assessments and other Research

USBR Conventional Hydropower Potential – Resource Assessments

	Reclamation Potential		
	Count	MW	MWh/CY
2011 Assessment	191	268	1,168,248
2012 Assessment	373	104	365,219
Total	564	372	1,533,467

Resource assessments available at: http://www.usbr.gov/power/

Reclamation-Wide Pumped Storage Screening Study (2014)

- Screening-level analysis evaluated adding PS facilities to Reclamation's 348 existing reservoirs
- 15 sites located at 7 reservoirs showed a preliminary cost estimate of less than \$1.5 million per MW Installed

Demand Management Opportunities

- Reclamation is currently conducting a study in the Central Arizona Project to understand what opportunities may exist to:
 - Reduce pumping load or increase flexibility through equipment upgrades; and
 - Shift pumping loads or employ demand response to support renewable energy integration and/or grid stability
 - Target Completion 01-2017

Lease of Power Privilege

Lease of Power Privilege (LOPP)

All other Reclamation facilities – i.e. dams not authorized for federal power development – would proceed through FERC

Reclamation and Non-Federal Hydropower Development

All non-federal development must be consistent with Reclamation project purposes

Power Delivery

Water Delivery

Reclamation Small Conduit Hydropower Act PL 113-24

- Enacted August 9, 2013
- Amends the Reclamation Project Act of 1939 to:
- 1. Authorize LOPP at all Reclamation conduits
- 2. Reaffirms that LOPP projects cannot negatively impact the Reclamation Project
- 3. Requires that LOPP be offered *first* to an irrigation district or water users association operating or receiving water from the applicable transferred or reserved conduit.
- 4. Requires Reclamation to apply its categorical exclusion (CE) process to conduit development

Conventional Non-Federal Snapshot

Lease of Power Privilege

Operating: 12 sites (43 MW)

In Development (C): 17 sites (51 MW)

Federal Energy Regulatory Commission

Operating: 52 sites (465 MW)

In Development (C): 21 sites (59 MW)

64 non-federal facilities, comprising approximately 508 MW currently operating on Reclamation infrastructure

