Sustainable Transportation Summit H2@Scale Stakeholder Panel Session 12 July 2016

Mitch Ewan HNEI Hydrogen Systems Program Manager

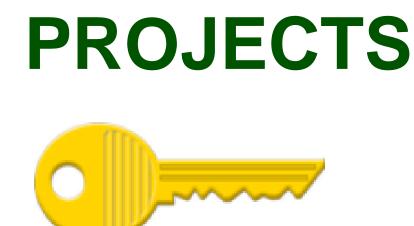
Strategic Focus for Hawaii (H2)

- Demonstrate cost effective infrastructure to produce, distribute, and dispense hydrogen;
- Focus on fleet vehicles starting with public transportation & county trucks;
 - > Central fueling 30 kg per day per bus;
 - Public benefit tax dollars support public transportation needs;
- ✓ Industry will take care of the vehicles;
- Support early heavy users of hydrogen to develop a hydrogen market;
- Private industry will take over when it sees it can make money.

Building Blocks for Infrastructure Development

- 1. Political Will
- 2. Policies & Plans
- 3. Resources
- 4. Strategic Market Transformation Projects
- **5. Community Support**
- 6. Strategic Partners We are addressing all 6 of these in Hawaii!

Political Will


Consistent Long-Term Political, Policy, and Financial Support

Hawaii Policies in Statute

- ✓ 100% RPS for electrical sector utilities✓ Barrel Tax
- ✓ Hawaii Hydrogen Fund
- Hydrogen Implementation Coordinator

Projects Need to be Strategic

- Need to demonstrate the economic viability and benefits of the technology.
- Will not get private investment until the numbers work out relative to other options.

MCBH Hydrogen 350/700 Bar Station

- Fast Fill
- Unattended Operation
- Remote Monitoring
- Automatic shut down

Honolulu Airport Rental Car Bus Fleet

- ✓ 2018 State DoT operate fleet of 8 transit & 8 shuttle fuel cell buses at HNL airport.
- ✓ State provides land at airport
- ✓ HCATT/Air Force provide 65 kg/day electrolyzer station
- Private Partner to provide renewable energy source to make H2 and build station & storage
- ✓ 2016 \$1.2 million in state funds approved for design

Hawaii Air National Guard F-22 Campus

- ✓ Energy Storage
 - >40% hydrogen
 - > 30% battery
 - ≻ 30% TBD
- ✓ Goal
 - > 100% hydrogen flight line

SERVCO PACIFIC: TOYOTA MIRAI

SERVCO

- Toyota begins FCV development in 1992
- Sevco begins Mirai distribution discussion with Toyota in 2012
- Mirai goes on sale in Japan in December 2014
- Mirai authorized by Toyota in only 2 US States: CA and HI
- Servco has been using the Mirai to promote hydrogen vehicles and hydrogen infrastructure in Hawaii

WWW.SERVCO.COM

Servco CEO Mark Fukunaga and Hawaii Governor David Ige

SERVCO'S HYDROGEN PRODUCTION AND DISPENSING MINI-STATION

Concept Drawing (Front View)



- H35 & H70 Dispensing
- On-site Electrolysis hydrogen production
- 22kg design daily usage
- Target commissioning: January 2017

SERVCO

WWW.SERVCO.COM

Oahu Hydrogen Stations



7 hydrogen stations could provide enough hydrogen island-wide for the first 5 - 10 years of passenger vehicle market growth

Central Site Production/Distributed Dispensing

Economically viable electrolytic hydrogen will require low cost electricity + high capital utilization.

- Central site production for highest capital utilization;
- ✓ Distributed dispensing sites with minimum complexity to reduce fuel distribution costs;
- Optimize additional revenue streams from:
 - Monetizing ancillary services;
 - Sale of hydrogen for transportation

Big Island Buses & Hydrogen Transport Trailers

County of Hawaii Bus (1)

HAVO Buses (2)

Hydrogen Transport Trailers (3)

- Fuel Cell Electric Hybrid Shuttle Buses demonstrate to the general public the advantages of fuel cell buses and electric drive.
 - > Quiet ride
 - No diesel fumes.
 - Potential for lower O&M costs (need low cost hydrogen);
- Hydrogen Transport Trailer carries 105 kg @ 450 bar. They will demonstrate distributed dispensing using cascade fill to 350 bar using a "Smart" dispenser.

NELHA Hydrogen Plant

Governor David Ige Reviewing NELHA H2 Station Plans

HAVO 350 Bar Dispensing Station

- Drag & Drop "Computer Controlled" Tube Trailers.
- Cascade Fill
- Boost compressor captures 95% of H2
- Unattended Operation
- Remote Monitoring
- Automatic shut down

Must Keep Community Informed

- Need to justify investment of taxpayer dollars to the taxpayer;
- ✓ Public needs to see an immediate benefit to them:
 - Public transportation vs. perception of supporting "rich man's toys";
 - Leverage public infrastructure for private transportation for early adopters.
- ✓ Workforce development for the new jobs created;
- First Responder training. Helps address safety concerns;
- ✓ Legal and insurance industries need to be educated;
- ✓ Active public outreach campaign

BACKUP SLIDES

2010 to 2020 Renewable Hydrogen Plan

Critical Success Factors

- Rising oil prices stimulate the search for alternatives
- Public support for protecting the environment
- Availability of primary renewable energy sources
- General Motors roll-out in Hawaii
- Toyota Roll-out in Hawaii
- Private industry recognizing business opportunities
- Political will and leadership
- Dedicated funding

Challenges

- Economic viability
- Large investment required to build H2 infrastructure
- Renewable energy sources need to be developed on a large scale
- Transportation applications need to be economically viable
- Legislative funding needs to be consistent
- Sense of urgency
- Barriers and inertia hard to overcome

HNEI Hawai'i Natural Energy Institute

HI H2 Plan: Major Tasks

Task #1: Develop Large-Scale Renewable Energy Sources:

Geothermal, solar, wind, hydro and biomass.

Task #2: Develop Hydrogen Infrastructure

- > Hydrogen Production, storage, delivery, dispensing stations
- Task #3: Support Application & Demonstration Projects
- Task #4: Policy Development
- Task #5: Funding
- Task #6: Commercialization by Private Business

Hydrogen Investment Capital Special Fund (HRS 211F-5.7)

✓Objectives:

- Provide seed capital and venture capital for private and federal projects for research, development, & testing;
- Implement the Hawaii Renewable Hydrogen Program;
- Any other purpose deemed necessary to carry out the purposes of the Hawaii Renewable Hydrogen Program.

✓ Sources of Funds

- Appropriations made by the legislature;
- Contributions from public or private partners;
- > All interest earned on or accrued to moneys deposited in the special fund.

Barrel Tax (HRS 243-3.5)

- ✓ Enacted in 2010
- ✓ \$1.05 per barrel of oil excluding air transportation;
- ✓ Generates ~\$27 million per year;
- ✓ 60% goes to General Fund;
- ✓ 40% goes to:
 - > Oil Spill emergency clean-up fund
 - State energy office
 - State Department of Agriculture
 - Energy Systems Development Special Fund (HNEI)
- Hydrogen projects have received funding from HNEI allocation;
- ✓ Potential source for Hydrogen Fund replenishment.

Need to make a compelling case

Hydrogen Program Needs to be Cost Effective

- Program needs to be seen as providing cost effective solutions/benefits:
 - What problems can hydrogen fix?
 - Is it affordable?
- Competing for scarce resources:
 - Long term vs. short term;
 - Do we fund hydrogen or air conditioners for schools? The kids are suffering today!
- Need success stories;
 - Technology validated;
 - Affordable.
- Need champions.

Scale Introduces Many Challenges

- ✓ Resources land use issues competing use of resources e.g. electricity vs fuel, food vs fuel, etc.
- ✓ Political will supportive policy (HCEI)
- Community support permitting (DBEDT)
- ✓ Financing strategic partners
- ✓ Technologies constantly changing/improving
 - Strategic projects to validate viability
 - > Energy infrastructure is very capital intensive
 - "Almost There" is not sufficient to attract private investment, complicates planning process

Primary Resource Needs (H2-FC)

- Biomass to Hydrogen
 - Sustainable growth at 20 dry tons per acre
 - Hydrogen yield, 70 kg/dry ton(NREL)
- Electricity to Hydrogen
 - 36kw-hr/kg thermodynamic limit
 - 60% efficient to compressed H2
- Assume H2-FC vehicles 2x efficiency of current vehicle fleet.
- Displacement of 20% of ground transportation fuel
 - 100 million gal liquid fuel ~ 50 million kg H2)
 - 35,000 acres "good" agricultural land (dedicated HC&S), or
 - 3000 GW-hrs/yr of electricity (~30% of current state electrical generation)

Scale of need requires portfolio of solutions

