

Big-picture issues confronting Co-Optima

John Farrell Sustainable Transportation Summit July 12, 2016

1

Major Co-Optima Challenges

What fuels do engines want?

Fundamentally different combustion dynamics require different fuel properties

Spark ignition (Thrust I) engines

Central challenge: avoiding knock

Important fuel properties:

- Octane number (RON and MON)
- $_{\rm O}$ Heat of vaporization
- $_{\circ}$ Flame speed
- $_{\rm O}$ Particulate matter index
- Distillation

Engine performance merit function

Provides systematic ranking of blendstock candidates on engine efficiency when multiple fuel properties are varying simultaneously

Allows fuel economy gains to be estimated based on fuel properties

$$Merit = \frac{(RON_{mix} - 92)}{1.6} - K \frac{(S_{mix} - 10)}{1.6} + \frac{0.01[ON/kJ/kg](HoV_{mix} - 415[kJ/kg])}{1.6}$$

$$+ \frac{(HoV_{mix} - 415[kJ/kg])}{130} + \frac{(S_{Lmix} - 46[cm/s])}{3}$$

$$- LFV_{150} - H(PMI - 2.0)[0.67 + 0.5(PMI - 2.0)]$$

$$RON = research octane number K = engine-dependent constant S = sensitivity (RON-MON) ON = effective octane number HoV = heat of vaporization S_L = flame speed LFV = liquid fuel volume at 150°C H = Heaviside function$$

PMI = particle mass index

Thrust II engines: the Wild West

In-cylinder mixing/ kinetics needs to be optimized to control ignition timing Requirements vary as speed/load changes

Significant engineering innovations required

Much progress already achieved with air handling, fuel injection, novel strategies

Pressure [bar] 20 -240 -220 -200 -180 -160 -60 20 -40 -20 0 40 60 80 100

Source: Mark Musculus SNL

What fuels can we make?

Fuel selection criteria ("decision tree")

Thrust I decision tree results

What will work in the real world?

New fuels must be sustainable, affordable, and scalable

Cost and environmental impact analyses

* LCA = Life cycle analysis; TEA = techno-economic analysis; TRL = technology readiness level

13

Identifying/mitigating market barriers

Identify and mitigate challenges of moving new fuels/ engines to markets

Analysis of new fuel and vehicle introduction

Engage stakeholders across value chain

How do we co-optimize?

Identifying the best options, subject to many constraints

Approach

Current merit function development aproach

Numerically optimized merit function

Identifying options: a multi-objective optimization problem

Maximize: Minimize:	Engine Numbe		cy 🔀 ndstocks	Vehicle Fuel Economy						
	Base scenario			Alt scenario 1			Alt	Alt scenario 2		
Constraints	: High	Med	Low	High	Med	Low	High	Med	Low	
∆GHG H₂O consumption Viable routes Feedstock cost Pipeline compatibility Tech Readiness Level Energy density										
	Solution set A			Solution set B			Sol	Solution set C		

Acknowledgements

DOE Sponsors:

Alicia Lindauer and Borka Kostova (BETO) Kevin Stork, Gurpreet Singh, and Leo Breton (VTO)

Co-Optima Technical Team Leads:

Dan Gaspar (PNNL), Paul Miles (SNL), Jim Szybist (ORNL), Jennifer Dunn (ANL), Matt McNenly (LLNL), Doug Longman (ANL)

Other Co-Optima Leadership Team Members:

John Holladay (PNNL), Art Pontau (SNL), Robert Wagner (ORNL)

Thank You