Dish Stirling High Performance Thermal Storage

Sandia National Laboratories
Chuck Andraka, DMTS
Dish Stirling Technology

- High performance systems
 - Over 31% sunlight to grid efficiency
 - Over 26% annual efficiency
 - High temperature
 - High concentration
- Typically 3-30kWe
 - Potentially off-grid
 - Large power parks proposed for low cost

- Best technology to meet SunShot goal
 - $0.06/kWh attainable
 - Deployment
 - Supply chain development
 - Design for manufacture

- Needs storage
 - Match demand curves
 - Utilities/PUC’s need to “value” evening generation
 - Differentiation
Project Objectives

• **Goal:**
 - Provide a feasible technical solution for 6 hours of storage on large (25kWₑ) dish Stirling systems
 - Enable high performance dish Stirling systems to increase capacity into evening hours

• **Innovation:**
 - Dish Stirling systems have demonstrated path to SunShot Cost Goals of 6-8 ¢/kWh, and is further enhanced by storage
 - Concepts for dish storage currently pursued are limited to small dish systems with limited time of storage due to weight at focus
 - Proposed solution improves system performance, lowers LCOE, and reduces system cost through more efficient structural design
 - Focus on “on-dish” high temperature PCM storage
Technical Approach Overview

- Latent transport and storage system matches Stirling isothermal input
 - High performance latent storage
 - Heat pipe input and output
 - Emphasis on high performance PCM’s (metallic)
- Rear-mounted storage and engine
 - Balanced dish
 - Closes pedestal gap allowing efficient structure
 - Leverages Sandia/DOE high performance heat pipe development
- Pumped return negates elevation change issues

Isothermal input requires latent transport and storage to avoid high exergy losses
Key Development Areas

- High performance heat pipe receiver
- Phase change material selection and characterization
- Phase change material compatibility with containment
- System modeling
- Integrated test module

PCM module schematic. Integrated module test would consider Control Volume 3
Results: High Performance Heat Pipe Receiver

- Robust high performance wick developed
 - Blended fiber and support posts
- Model with measurements indicates $80-100\text{kW}_{\text{th}}$
- Bench scale test successful
 - Over 12,000 hours
 - 1.6kW continuous throughput
 - X-ray CT indicates no collapse

Model results for various wick candidates

Bench test operational record
Results: PCM Selection and Characterization

- Modeling led selection of metallic PCM’s
- Literature, Factsage, phase diagrams led to final selection
- Ternary metallic per ASM
 - Cu:Mg:Si = 53.5:21.1:25.3 wt%
 - Heat of Melting 462 J/g
 - Consistent cycling in DSC
- Lab samples and large quantities synthesized
- Considerable variation in literature
Results: PCM Compatibility with Containment

- Short-term testing demonstrated acute attack
 - 30% loss of containment in 150 hours
 - 3 containment alloys tested
- Protective coating development
 - Complex geometry limits options
 - Initial focus on solution coatings
 - Later focus on commercial thermal spray
- Approach
 - Identify potential candidates by Gibbs Free Energy
 - Powdered XRD after crucible exposure
 - Sample boat coating exposure
 - Sectioning
 - X-Ray CT scans
- Results
 - MgAl$_2$O$_4$ and Al$_2$O$_3$ promising
 - Inconsistent vendor-to-vendor results

X-Ray CT proved valuable for evaluating closed capsules

Section of Al$_2$O$_3$ showing no degradation after 500 hours
Results: Systems Modeling

- Field level model with shading developed
- LCOE and Profit impacts
 - SCE TOD pricing
 - Vary SM
 - Vary size of storage
- Clear financial benefit
 - Optimum 1.25 SM
 - Significant increase in energy
 - Operational improvements
 - Summer afternoon critical to profit

<table>
<thead>
<tr>
<th>Case</th>
<th>LCOE ($/kWh)</th>
<th>Profit ($/kWh)</th>
<th>Cost ($/kW)</th>
<th>Cost ($/kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Storage</td>
<td>0.086</td>
<td>0.056</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Base</td>
<td>0.076</td>
<td>0.072</td>
<td>21</td>
<td>52</td>
</tr>
<tr>
<td>Level LCOE</td>
<td>0.086</td>
<td>0.062</td>
<td>33</td>
<td>82</td>
</tr>
<tr>
<td>Level Profit</td>
<td>0.092</td>
<td>0.056</td>
<td>40</td>
<td>99</td>
</tr>
<tr>
<td>SunShot</td>
<td>0.06</td>
<td>--</td>
<td>6.5</td>
<td>16</td>
</tr>
</tbody>
</table>
Results: Integrated Test Module

- 1/10-scale module designed and fabricated
 - Heat pipe input and output
 - Electrically heated
 - Gas gap calorimeter
 - Flange features to protect welds
- Awaiting coating at end of project
Summary

- Robust heat pipe developed and on test
 - 12000+ hours, 20x prior felt wick heat pipes
 - Application to electronics cooling, tower, other energy systems
- High performance metallic PCM identified
 - Synthesized in significant volumes
 - Useful for isothermal systems up to 800°C
- PCM compatibility coatings
 - Strong candidates need demonstration
 - Alumina
 - Mg Al Spinel
- Analytical demonstration of the value of storage
 - 6 hours “best value”
 - Higher allowable cost than tower systems
- Hardware ready for coating and testing
- Patents and papers