Thermochemical Storage with Anhydrous Ammonia

CSP-ELEMENTS Award # DE-EE0006536
July 1, 2014 – September 30, 2016
Project Budget: $1,478,588

PI: Adrienne Lavine, Professor UCLA
Other Contributors: Keith Lovegrove (IT Power Australia), Hamarz Aryafar, Abdon Sepulveda, Dante Simonetti, Richard Wirz, Pirouz Kavehpour
Value Proposition and Problem Statement

• Ammonia-based thermochemical energy storage is a well-developed technology that has the potential to meet the CSP:ELEMENTS performance and cost goals.
 • Target performance: Heat steam to 650°C for supercritical steam power block.
 • Plant context: 220 MW_t plant with 6 hours of storage.
 • Target cost: $15/kWh_t.
• At start of project, two key challenges identified:
 • Ammonia synthesis had never been used to heat steam to 650°C. Is it possible?
 • Can physical storage of high pressure nitrogen/hydrogen mixture be done cost-effectively?
System Overview

Heliostat Field

Ammonia Dissociation (Endothermic Reactor/Receiver)

Ammonia Synthesis (Exothermic Reactor)

Heat Exchangers

Power Generation (Steam Cycle)

Liquid NH₃

Ambient Temperature Storage

N₂/H₂ gas

NH₃ + 66.6 kJ/mol ⇌ \(\frac{1}{2} \) N₂ + \(\frac{3}{2} \) H₂
Objectives

• **Phase 1 Main Objectives:**
 - Demonstrate heating supercritical steam to 650°C.
 - Perform techno-economic evaluation to show cost-effective gas storage.
 - Perform initial design of endothermic reactor/receiver to demonstrate feasibility. (Won’t be discussed in this talk.)

• **Phase 2 Main Objective:** Predict performance and cost of utility-scale synthesis system for ammonia-based thermochemical energy storage.
Selected Milestones and Results

- Gas storage
- Steam heating
 - Experimental
 - Modeling
- Optimizing the synthesis reactor system for low cost
Gas Storage
Gas Storage Milestone

- Need to store ambient temperature, high pressure N$_2$+3H$_2$.
- 220 MW$_t$ plant, 6 hrs storage, needs ~24,000 m3 at 20 MPa.
 - Comparable to two-tank molten salt.
- Underground storage concept:
 - Surrounding geology provides bulk of pressure containment.
 - Underground gas storage already widely used.
- Approaches considered:
 - depleted oil or gas wells
 - aquifers
 - salt caverns
 - rock caverns
 - tunnel drilling
 - shaft drilling
Salt Caverns

• Solution mining of salt caverns is simple, established process:
 • Fresh water pumped into salt dome or bed. Brine extracted.

• Salt caverns widely used for storage:
 • Over 2000 salt caverns in North America alone for hydrocarbon storage.
 • Pure hydrogen or hydrogen-rich gas mixtures have been stored.

• Salt cavern conditions are suitable for our application:
 • Volumes up to 500,000 m³
 • Pressures up to ~50 MPa
 • Rock salt chemically inert to hydrogen
 • Permeability low enough to contain hydrogen gas

• Roughly $1/kWh_t to create storage space (for large projects).
Salt Caverns, cont.

- Suitable salt deposits are present on every continent, good coincidence with high DNI areas.
- Despite this, siting CSP plants for suitable salt deposits is a significant constraint.
Large Diameter Drilled Shafts

• Removes site choice constraint.
• Shaft drilling routinely carried out at up to 7.5 m diameter and depths of 1000 m.
• In consultation with drilling company:
 • Cost roughly $5/kWh_t.
• Conceptual design developed.
• Details of hydrogen impermeable lining and endcaps required.
Steam Heating
Steam Heating Milestone, Modeling

Model shows supercritical steam can be heated from 350 to 650 °C.

\[m_g = 0.3 \, \text{g/s} \quad P_g = 30 \, \text{MPa} \]
\[m_s = 0.33 \, \text{g/s} \quad P_s = 26 \, \text{MPa} \]
\[D_o = 2 \, \text{cm} \]
\[D_i = 0.5 \, \text{cm} \]
Steam Heating Milestone, Experimental

- Experiments show steam heated from 305°C to 650°C at ~100 W scale.
- Work ongoing toward heating steam at 5 kW scale.
Cost Optimization
Optimized Cost Milestone

- Consider entire synthesis system:
 - Synthesis reactor
 - Recuperating heat exchanger
 - Additional preconditioning subsystems
- Modular system with different reactor designs for different temperature regions.
- Multi-parameter optimization problem with tens of parameters.
- Largest cost is wall material, including high nickel alloy in high temperature regions.
- Minimize wall material volume per unit power.
Optimizing Inner and Outer Diameters

- Optimization is driving to smaller scale.
- Not a surprising result.
- How low can we go?
 - Pressure drop will increase – and pumping power.
 - Manufacturing costs must be considered.
Path-to-Market
Path to Market

1. Identification of partners – current to next 12 months
 - Continuation of experiments, modeling, and design to support solar-driven closed-loop experiment.

 - On sun, using existing tower-based test facility or single dish.
 - Steam production but no power generation.
 - Budget around $4 million.

3. Pilot 1 MWₑ system – 2018-2021, followed by continuous operation
 - Gas storage fabricated above ground using pressure pipe.
 - Heat recovery synthesis reactor designed for 650°C supercritical steam, but throttled to lower pressure for small off-the-shelf subcritical steam turbine.
 - Generate revenue sufficient to cover operating costs, operate for extended years as needed.
 - Budget around $15 million.
Path to Market

4. **First utility scale demonstration, 10 MWₑ – 2019-2024, followed by continuous operation**
 - First trial of *underground storage* using shaft drilling technology.
 - Still using small off-the-shelf subcritical steam turbine.
 - Significant financial assistance package required to build the first system, but operation and balance of financial package on fully commercial basis.
 - Budget around $100 million.

5. **First full-sized system, 100 MWₑ, 10+ hrs storage – 2022-2027, followed by continuous operation**
 - Underground storage either salt cavern or shaft drilled.
 - *Synthesis reactor produces supercritical steam at 650°C, potentially for a supercritical steam turbine.*
 - Preferential finance terms probably required, otherwise a fully commercial system.
 - Budget around $700 million.
Conclusions

- Gas storage in salt caverns or drilled shafts appears feasible within the $15/kWh_t$ budget.
- Ammonia synthesis can be used to heat supercritical steam to 650°C, according to experiments and modeling.
- Cost minimization of the synthesis reactor system is underway:
 - Small diameter tubes are desirable.
 - Multi-parameter optimization of modular design has potential to significantly decrease cost.
- A proposed path-to-market could achieve a full-scale system by 2027.
Acknowledgments

The information, data, and work presented herein was funded by the Office of Energy Efficiency and Renewable Energy, U.S. Dept. of Energy, Award No. DE-EE0006536. The authors gratefully acknowledge the support.

QUESTIONS?