

CSP Program Summit 2016

Green Parabolic Trough Collector (GPTC)

Inspired by an architectural paradigm

energy.gov/sunshot

Philip Gleckman, Sunvapor, Inc.

Overview

- Principal Investigator: Philip Gleckman, Sunvapor, Inc.
- Project Partner: Prof. Caitlin Mueller, MIT Dept. of Architecture
- Total Project Budget: \$2,175,937
- Project Duration: Two years

Objective

Demonstrate disruptive reduction in the cost/performance ratio of the collector to enable steam sales...

Problem statement

Single axis parabolic troughs collectors (PTCs) are CSP's Gold Standard with 85% installed capacity *But power plant levelized cost is still too high*

Problem statement: Collector cost

 Single axis collector *performance* cannot be significantly improved but there is a significant opportunity to reduce the *cost*

CSP Program Summit 2016

Adapted from K. Chamberlain, "CSP parabolic trough report: cost, performance and key trends", CSP Today (2013)

Need for fresh perspective

(2013)

"Digital structures" architectural paradigm

Value proposition

- We have proposed three surprising features to reduce structural cost:
 - Use of a lower cost, low embodied-energy structural material
 - > A new material-efficient structural typology
 - Low-cost manufacturing processes
- We propose a GPTC that meets COLLECTS goals with <\$50/m² and >55% annual optical efficiency

Phase	Major Milestones and Results
Year 1	 Lab tests of subassemblies combined with full scale computer models demonstrate 90% intercept factor for Solar Collector Array (SCA) in worst-case operational wind Accelerated testing for 30 years equivalent does not lead to significant reduction of intercept factor Cost estimate using supplier quotations consistent with \$50/m²
Year 2	 Outdoor testing of Solar Collector Element yields intercept factor > 95% over 90 days Total installed cost estimate < \$50/m² based on actual assembly & installation Complete SCA predicted to have >55% annual efficiency

Nearest term market is solar process heat in the USA Steps following Phase 2:

- Install new collectors to augment capacity at existing process heat plant owned and operated by Sunvapor
- Achieve Solar Rating and Certification (SRCC) for steam production
- Perform sufficient testing to be able to offer warrantee on performance
- Deploy for new projects