

CSP Program Summit 2016

Advanced Low-Cost Receiver for Parabolic Trough Solar Power— Design for Manufacturing SunShot SolarMat award DE-EE0006813 2.5 Years (\$1.4M DoE SunShot Funding)

Joel Stettenheim, President & Principal Investigator

energy.gov/sunshot

Partners

- 50+ PhD researchers, 40,000 ft² SOA fabrication and laboratory facilities

- development partnership with the Liu Group at Dartmouth related to novel air stable solar selective coating

- third party testing and validation of novel receiver

Solar Dynamics

- replacing partnership with Abengoa related to design analysis

Shipulski Design

- industry leading expert on Design for Manufacturability

Vetted Technology

\$2.1M in grant development funding

 Current follow-on funding based on proven prototypes

SOA Receiver

http://www.schott.com/newzealand/english/download/schott_solar_csp_memorandum_en_medium_resolution.pdf

SunTrap™ Receivers Value Proposition:

- Improved price-performance over SOA Vacuum receivers
- Flexible design can be optimized for different applications

- Cover majority of radiating surface with SOA microporous insulation
- Reduces radiative losses at high temperatures

Replace vacuum with stratified air cavity that reduces costs

Technology Development Protocol

Prototypes Build optical and thermal prototypes and test facilities and implement novel testing protocols

CSP Program Summit 2016

Analysis and Design Optimize design based on efficient analysis of 1000's of permutations

Testing and Validation Optical and thermal testing validate performance and models

Thermal Analysis

- Developed sophisticated set of ANSYS Fluent models and validated with NREL and proprietary experimental data
- Analyzed radiative, convective, and conductive loss pathways
- Loss models coupled in the FLUENT solver through the energy equation and the core Navier-Stokes equations.
- Discrete-ordinates (DO) for radiative heat transfer losses

Constant-T heat loss Analysis of radiative, convective and conductive losses with fixed receiver T

Wind effects 2D open domain model

Insolation BC 2D model with radiation BC from Zemax optical analysis

3D pipe flow model Examine heat transfer from pipe to HTF

Tilt Angle & Heat Loss Mechanisms

- Analyze heat loss pathways
- Convection cells appreciable after > 50°
- Majority insolation at low angle
- Tilt losses not significant factor

Thermal Performance - $\eta_{thermal}$

Optical Performance

Co-optimized Efficiencies - η_{total}

SolarMat2 Project Objectives

- 1. Design for 30 Year Service Life
- 2. Design for Ease of Manufacture

Approach

• Analysis, Design, Build, & Testing

Receiver Components

- Expansion Joints
- Structure stiffness
- Seals
- Air Stable Selective Coating
- Microporous insulation

Service Life Analysis: Mechanical Structural Stiffness

Service Life Testing

Water Intrusion Testing

Accelerated Wear Testing

Manufacturing Process Optimization

1. Co-development of sourcing subassemblies and components

Collaborating closely with specialized suppliers of key parts:

- Air Stable Solar-Selective Coating
- Microporous Insulation
- Anti-Reflective Glass

Geometry and specifications tailored to fit manufacturing processes

Quality control with reduced risk

2. Pre-assembly of receiver modules

Efficient, standardized process using Design for Assembly (DFA) principles Controlled assembly environment optimally located Specialized fixtures to speed assembly

3. Field assembly

Simpler than similar procedures used for SOA receivers Worksite process treated as a standardized, controlled assembly operation

Manufacturing Process Optimization

- Field Demonstration of receiver string at conclusion of SolarMat2 award
- Pilot Project at increased scale with partner built on SolarMat2 work
- Commercial deployment with initial scale production
- IP Development file provisionals, US utility and international PCT patent applications

CSP Program Summit 2016

Novel Low-Cost Parabolic Trough Collector Structures – initial development and next steps SunShot Incubator award DE-EE0006687 1 Year (\$700k DoE SunShot Funding)

Joel Stettenheim, President & Principal Investigator

energy.gov/sunshot

Parabolic Trough Solar Field – Cost Drivers

- SunTrap receiver
 - Incubator demonstration
- Novel collector structures
 - **Reduce framing**
 - Simplify assembly
 - Highly accurate mirrors at competitive cost

Collector Cost Drivers - Pareto Chart

Technology Development Protocol

Analysis and Design

Vary configurations & component (mast, panels, tube,..)

Prototype Build

Assemble cable suspension & panel structure

Testing and Validation

Test optical performance photogrammetry

Trough Structure Overview

- Survival:
 - Wind load torsion on long drive string – mirror breakage
- Operation:
 - Stable tracking orientation
 - Accurate shape and surface
- Space frame structures highly optimized
 - Gossamer LATTM 7.3m, 8m

GOSSAMER INNOVATIONS

http://news.3m.com/press-release/company/3m-and-gossamer-space-frames-inaugurate-worldslargest-aperture-parabolic-trou

Collector Design & Analysis

Gossamer X-Perf[™] Structural Mirror Panels

- High accuracy, lightweight structural composite mirror panels with thin glass or 3M mirror film
- Gossamer LAT[™] 7.3m trough with 104x concentration
- Tunable for very high stiffness

Collector Physical Modeling

- Model with SolidWorks, ANSYS, and custom analytical
 - Deformations of panels and mast structures
 - Vary structural elements (e.g., torque tube, panel, mast, cables)
- Wind & Gravity load analysis

Collector Optical Analysis from Mechanical Results

- Coupling of structural and optical models
 - Geometric Slope and Operational Effects
 - Displacement panel, gravity & support structure
 - Scatter: Sun shape, tracking, specularity

Design Iterations

Iterative panel and support structural analysis and refinement

Gossamer X-Perf[™] panel backing structure

Mast, cable and receiver structure

Prototype Build – Suspension Trough

- Use cables to define parabola, highly stiff X-Perf[™] mirror panels to hold shape between mounting points
- High accuracy (2.2 mrad slope error for system)

Testing – Development of Photogrammetry Tools

- NREL Observer method rapid mirror error mapping
 - Reflected image of absorber on mirror surface
 - Measured as slope error

Across Axial Mirror Length

- Optimized X-Perf[™] mirror panels enable cantilever beyond supports, minimal framing to define parabola
- Torsional stiffness required to withstand wind, maintain tracking accuracy
 - Torque ~ aperture², drive string length
 - Large aperture dilutes costs per mirror area, long drive string dilutes tracker cost but requires large, expensive drive
 - Increasing drive count allows less expensive drives and reduces governing torsional loads on collector frame
 - Unlock opportunities to simplify structure and assembly

- Pending Incubator grant for follow-on refinement
- Field Demonstration
- Pilot Project with development partner
- Commercial Deployment

Contact Information

Joel Stettenheim President Norwich Technologies <u>Stettenheim@norwitech.com</u> 802-384-1333

