
VOLTTRON™
Drivers and Historians

CHANDRIKA SIVARAMAKRISHNAN

August 11, 2016 1

Pacific Northwest National Laboratory
VOLTTRONTM 2016

PNNL-SA-119802

Introduction

Two essential VOLTTRON™ services
■ Data collection - Driver framework
■ Data storage - Historian framework
■ Both frameworks are easily extensible

August 11, 2016 2

Topics Covered

► Driver framework
■ Configuration for existing driver types
■ Interacting with the device (read & write)
■ Demonstration of a BACnet device setup using VOLTTRON™ utility scripts
■ Development of new drivers

► Historian framework
■ Existing historians
■ Development of new historians

August 11, 2016 3

Driver Framework

► Implemented as sub agents of Master Driver Agent
► One driver subagent interfaces with one device
► Currently we have two driver interfaces

■ Modbus
■ BACnet

► Also support a fake driver for development/testing purpose
► On demand read and write are done using Actuator agent

August 11, 2016 4

Driver Configuration

► Driver configuration file
■ Driver type, device address, and

reference to the registry configuration
file

► Register configuration file
■ Settings for each individual data point

on the device
■ Specific to driver type
■ Example – point name, point address,

units, writeable, index, object type

► Master Driver Agent configuration file
■ Has reference to the list of driver

configuration files

August 11, 2016 5

Device 1
1

Registry
Configuration

Device Driver
Configuration

Master Driver
Configuration

1

N

1

1

Generating BACnet Configuration Files

► VOLTTRON™ provides two scripts to help configure BACnet devices
■ bacnet_scan.py - scan the network for devices
■ grab_bacnet_config.py - creates a CSV register configuration file to use as a

starting point
► Uses bacpypes library
► Need a BACpypes.ini configuration file

[BACpypes]
objectName: Betelgeuse
address: 10.0.2.15/24 # Address of machine running this script
objectIdentifier: 599
maxApduLengthAccepted: 1024
segmentationSupported: segmentedBoth
vendorIdentifier: 15

► Only point with a ‘presentValue’ value property are currently supported
August 11, 2016 6http://bacpypes.sourceforge.net/

http://bacpypes.sourceforge.net/

Device State Publishes

► Value of each point on a device is published to specific topic on message
bus

► Topic name is derived based on campus, building, unit, and path
configured in driver configuration file

► Publish one point at a time or all points together
■ [75.2, {"units": "F"}] – to topic - devices/pnnl/isb1/vav1/temperature
■ [{"temperature": 75.2, ...}, {"temperature":{"units": "F"}, ...}] - to topic -

devices/pnnl/isb1/vav1/all
► breadth first publish vs depth first

■ devices/temperature/vav1/isb1/pnnl VS devices/pnnl/isb1/vav1/temperature
■ devices/all/vav1/isb1/pnnl VS devices/pnnl/isb1/vav1/all

► Turn off any of them in your driver configuration

August 11, 2016 7

Actuator Agent

Actuator agent
► provides read and write access to device
► agents should schedule a time slot prior to any write operations

August 11, 2016 8

Actuator Functions - Read

Get point
► RPC Call:

agent.vip.rpc.call(
'platform.actuator',
'get_point',
<device path/point. For example, campus/building/unit/point name>
).get(timeout=5)

► Alternate method :
■ Publish to - devices/actuators/get/<device path>/<actuation point>
■ Success response @ devices/actuators/value/<device path>/<actuation

point>
■ Error response @ devices/actuators/error/<device path>/<actuation point>

August 11, 2016 9

Actuator Functions – Write – Step 1

Scheduling a task
► RPC call

publish_agent.vip.rpc.call(
'platform.actuator',
‘request_new_schedule’,
agent_id, # name of requesting agent
task_id, # unique ID for scheduled task.
priority, #('HIGH, 'LOW', 'LOW_PREEMPT').
message).get(timeout=5)

► Input Message:
[

["campus/building/device1", "2013-12-06 16:00:00", "2013-12-06 16:20:00”]
]

► Alternate method:
■ Publish to “devices/actuators/schedule/request”
■ Response @ devices/actuators/schedule/result August 11, 2016 10

Actuator Functions – Write – Step 2

Set point
► RPC call

publish_agent.vip.rpc.call(
'platform.actuator', # Target agent
'set_point', # Method
agent_id, # Requestor
'<device_path>/<point>', # Point to set
2.5 # New value

).get(timeout=5)
► Alternate:

■ Publish to devices/actuators/set/<device path>/<actuation point>
■ Success response @ devices/actuators/value/<device path>/<actuation

point>
■ Error response @ devices/actuators/error/<device path>/<actuation point>

August 11, 2016 11

Actuator Functions – Write – Step 3

Cancel a task
► RPC Call:

publish_agent.vip.rpc.call(
'platform.actuator',
'request_cancel_schedule',
agent_id,
taskid).get(timeout=10)

► Alternate:
■ Publish to “devices/actuators/schedule/request”
■ Response @ devices/actuators/schedule/result

August 11, 2016 12

Actuator Functions – Revert

► Revert implementation is driver specific.
■ Bacnet protocol has built in support for reverting to default value.
■ Modbus protocol does not support this hence volttron Modbus driver

implements its own.
► RPC call: revert_point or revert_all

publish_agent.vip.rpc.call('platform.actuator',
revert_point,
agent_id,
'<device_path>/<point>').get(timeout=5)

► Alternate:
■ Publish to actuators/revert/point/<device path>/<actuation point>
■ Success response @ devices/actuators/reverted/point/<device

path>/<actuation point>
■ Error response @ devices/actuators/error/<device path>/<actuation point>

August 11, 2016 13

Actuator – Notifications

► Task preemption notice - devices/actuators/schedule/response
► Schedule state broadcast - state of all currently used devices to topic

devices/actuators/schedule/announce/<full device path>
► Send out heartbeat signal to devices that have a configured heartbeat

point

Example:
https://github.com/VOLTTRON/volttron/blob/develop/examples/SchedulerEx
ample/schedule_example/agent.py

August 11, 2016 14

https://github.com/VOLTTRON/volttron/blob/develop/examples/SchedulerExample/schedule_example/agent.py

Driver Development: Interface Benefits

► Historians will automatically capture data published by the new device
driver.

► Device data can be graphed in VOLTTRON™ Central in real time.
► If the device can receive a heartbeat signal the driver framework can be

configured to automatically send a heartbeat signal.
► Existing Agents can interact with the device via the Actuator Agent

without any code changes.
► Configuration follows the standard form of other devices. Existing and

future tools for configuring devices will work with the new device driver.

August 11, 2016 15

Driver Development: Interface Development

► Each driver module must create a subclass of BaseInterface called
Interface.

► Each point on the device must be represented by an instance of
BaseRegister

► Interface class should be in <driver_type>.py module and should be at
services/core/MasterDriverAgent/master_driver/interfaces

► The `Interface` class must implement the following methods:
■ configure
■ scrape_all
■ set_point
■ get_point
■ revert_point
■ revert_all

► revert_point and revert_all can be implemented using BasicRevert mixin.
August 11, 2016 16

Driver Development (contd.)

On Load
► Master Driver Agent loads

Interface class from
<driver_type>.py

► Calls Interface.configure –
passes driver_config, contents
of registry config file

► Interface should create register
object for each point

Runtime operations
► Handled by Master Driver Agent

August 11, 2016 17

{
"driver_config": {

"device_address": "130.20.116.13",
"device_id": 500

},
"campus": "campus",
"building": "building",
"unit": "bacnet1",
"driver_type": "bacnet",
"registry_config":”/<path>/bacnet.csv",
"interval": 60,
"timezone": "UTC"

}

Historians

► Store and retrieve historical device and analysis data published to the
message bus

► Listens to
■ devices/
■ analysis/
■ record/
■ datalogger/

August 11, 2016 18

Available Historians

► SQLHistorian – SQLite and MySQL
► MongodbHistorian
► Forward Historian

August 11, 2016 19

Platform Historians

► Multiple historians can collect data within a single VOLTTRON™ instance
► The primary historian has the identity ‘platform.historian’
► ‘platform.historian’ a known identity for other agents to easily query

historian
► VOLTTRON™ Central queries only the primary historian

August 11, 2016 20

Historian Implementation

► Sub class of BaseHistorian
► base_historian.py

■ handles getting device and
agent data from the message
bus

■ Writes data to local cache until
successful write

► Specific implementations should
extend this class and implement
■ historian_setup
■ publish_to_historian: store data

in db, external service, file, etc.
■ query_historian
■ query_topic_list

August 11, 2016 21

DB
Cache

(SQLite)

Permanent
Data store

Message Bus

Base Historian

Specific Historian

publish_to_historian

write

References

Documentation:
► http://volttron.readthedocs.io/en/develop/core_services/drivers/index.html
► http://volttron.readthedocs.io/en/develop/core_services/historians/index.h

tml
► http://volttron.readthedocs.io/en/develop/apidocs/volttron/volttron.platform

.agent.html#volttron-platform-agent-base-historian-module

Source code:
► https://github.com/VOLTTRON/volttron/tree/develop/services/core/Master

DriverAgent/master_driver/interfaces
► https://github.com/VOLTTRON/volttron/blob/develop/examples/Scheduler

Example/schedule_example/agent.py
► https://github.com/VOLTTRON/volttron/blob/develop/services/core/Actuat

orAgent/tests/test_actuator_rpc.py
August 11, 2016 22

http://volttron.readthedocs.io/en/develop/core_services/drivers/index.html
http://volttron.readthedocs.io/en/develop/core_services/historians/index.html
http://volttron.readthedocs.io/en/develop/apidocs/volttron/volttron.platform.agent.html#volttron-platform-agent-base-historian-module
https://github.com/VOLTTRON/volttron/tree/develop/services/core/MasterDriverAgent/master_driver/interfaces
https://github.com/VOLTTRON/volttron/blob/develop/examples/SchedulerExample/schedule_example/agent.py
https://github.com/VOLTTRON/volttron/blob/develop/services/core/ActuatorAgent/tests/test_actuator_rpc.py

	VOLTTRON™ �Drivers and Historians
	Introduction
	Topics Covered
	Driver Framework
	Driver Configuration
	Generating BACnet Configuration Files
	Device State Publishes
	Actuator Agent
	Actuator Functions - Read
	Actuator Functions – Write – Step 1
	Actuator Functions – Write – Step 2
	Actuator Functions – Write – Step 3
	Actuator Functions – Revert
	Actuator – Notifications
	Driver Development: Interface Benefits
	Driver Development: Interface Development
	Driver Development (contd.)
	Historians
	Available Historians
	Platform Historians
	Historian Implementation
	References

