Sustainable Manufacturing via Multi-Scale Physics-Based Modeling

Third Wave Systems Inc. Georgia Institute of Technology, Purdue University, Pennsylvania State University, University of California Santa Barbara
2012-2016

Presenter: Ioannis Nompelis, Ph.D.
Third Wave Systems, Inc.

U.S. DOE Advanced Manufacturing Office Program Review Meeting
Washington, D.C.
June 14-15, 2016

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Project Objective

- What are we trying to do?
 - Develop and demonstrate a new **manufacturing-informed design paradigm** to dramatically improve manufacturing productivity, quality, and costs of machined components

- What is the problem?
 - Current machining processes and cutting tool designs are slow and too conservative, leading to high costs and significant waste
 - Currently, design teams are “manufacturing-aware,” but not necessarily “manufacturing-informed”
 - Performance, Cost and Quality problems are found too late in the Product Development Process

- Why is it Difficult?
 - Lack of sufficient fundamental understanding of process physics
 - Lack of physics-based process design and optimization tools for finish and semi-finish operations
 - High computational costs of modeling at multiple length and time scales for process optimization
 - Statistical variability of tooling, equipment and materials
Technical Innovation

- **State-of-the-art**
 - “Manufacturing aware” part and process design – No knowledge of process outcomes (cost, quality, performance) until manufacturing trials
 - Long and slow trial-and-error design of machining processes and cutting tools
 - Resulting manufacturing processes and cutting tool designs are conservative – unnecessarily slow, sub-optimal and expensive

- **Innovation**
 - **Multi-scale Physics-based Modeling** can provide detailed knowledge of process outcomes before manufacturing trials
 - **Physics-based Optimization** can squeeze significant productivity from state-of-the-art machining processes
 - **Reduce** (rough and finish) **machining costs and cycle times**, while **extending tool life** and maintaining **component performance**

- **Numerical simulation / optimization**
 - Very challenging but preferred to trial-and-error
 - Over 20 years of continuous development and software deployment
Technical Innovation

- **Distributed or hybrid parallelization of AdvantEdge**
 - Shortening time-to-solution and project size demands of customer are increasing
 - Employ multiple computers connected with a fast interconnect
 - Substantial change in programming paradigm; data-dependencies are explicit
 - Method has been exploited in other field of simulation for decades
 - Hardware: MPI, Intel Haswell CPUs 36 core, Infiniband (tested extensively)
 - Allows for larger problems to be made tractable than present technology
 - Faster assessment of accuracy via rapid mesh resolution studies
 - **Cost:** implementation requires substantial development effort

- **CAM system integration with Production Module and advanced optimization algorithm to recommend optimization values**
 - Seamless bi-directional integration with CAM system
 - Allows physics-based optimized manufacturing data to be centrally managed in Product Lifecycle management workflow
 - Converts decision making know-how in physics-based optimization domain into software system to benefit expanding end user bases
 - Allows physics-based toolpath optimization to be automated from CAM to Production Module to CAM
Technical Approach

- **Distributed parallelization of AdvantEdge**
 - Domain decomposition (ParMETIS, DSDE), parallel mesh adaptation, parallel contact algorithm based on one-sided communication

- **Algorithmic challenges**
 - Parallel mesh adaptation strategy and implementation
 - Parallel surface contact algorithms and efficient collision detection
 - Domain decomposition / load-balancing must be driven by the physics simulated

- First generation distributed solver is meeting most objectives; needs work
Technical Approach

- CAM Integration and Recommended Optimization Values

- Optimized toolpath by physics-based toolpath optimization model
- Optimization settings
- Version controlled information

- CAM tooling library
- Toolpath
- Postprocessor data
- Stock geometry
- Material data

Physics-based Toolpath Optimization
Recommend Optimization Values
Baseline Analysis

Production Module
Material Model
Project Settings File
Transition and Deployment

- Technology will be incorporated into existing commercial products; transition has begun
- Cutting Tool Manufacturers Care
 - **Who**: Kennametal, Ceratizit, Ingersoll, Sandvik, Allied Tools
 - **Why**: Improve cutting tool designs - specifically coolant delivery and tool life-related improvements, faster tool design iterations
- Aerospace, Auto, Medical, O&G manufacturers
 - **Jet Engine**: GE, Pratt & Whitney
 - **Airframe**: Boeing, GKN Aerospace, NexTech
 - **Auto**: GM, Ford
 - **Why**: Higher tool life, reduced cycle times, reduced costs, reduced energy consumption, effective coolant usage, improved final microstructure properties and performance, accelerated insertion of new materials
Transition and Deployment

- Heavy Equipment (Caterpillar)
- Medical Implants (e.g. DePuy Synthes)
- Oil & Gas and Power Systems (GE)
- Technology Sustainment Strategy
 - Partner with early adopters and market leaders to interface and integrate into their systems and validate the business case
 - Partner with industry leading PLM system developer to speed up deployment and collaborate in the early stage of development
- Transition results to date
 - Core technology from DoE program resulted in the sale of 40 software licenses across 20 companies in 2015
 - Sales were primarily to automotive and aerospace companies interested in efficient manufacturing
Measure of Success

• Impact and Metrics
 • Metrics (fundamental level): Correlation (error %) with experimental data for Forces, Torque, & Microstructure
 • Metrics (tool-path level): Achievement of 50% reduction in machining cycle time on representative components

• Energy and Economic Impact Estimates
 • Achieve 50 percent reduction in machine tool tare energy and water consumption in machining via reduced cycle times, coolant and tooling consumption.
 • Achieve a 50 percent reduction in cycle times and energy consumption for machining.
 • Save over 4.1 trillion BTUs per year and 7.2 million metric tons of CO2-equivalent per year for machining processes.
 • Estimated savings of $1.14 billion in tooling costs, reduction of $24 billion in cutting fluid costs
Project Management & Budget

- **Project Duration**: 36 months
- **Project task and key milestone schedule**
 - Project Plan has Qualitative and Quantitative Milestones
 - Comparison against experiments (validation metrics)
- **Have met all the go / no-go gates and milestones**

<table>
<thead>
<tr>
<th>Number</th>
<th>Go/No-go Description</th>
<th>Verification Method</th>
<th>Planned Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Coolant model implementation</td>
<td>Simulate 27 turning cases, achieve 90% completion success rate</td>
<td>End of Budget Year 1</td>
</tr>
<tr>
<td>2</td>
<td>Tool wear model prediction</td>
<td>Simulate 18 conditions, achieve 90% success rate of completion</td>
<td>End of Budget Year 2</td>
</tr>
<tr>
<td>3</td>
<td>Cutting force prediction</td>
<td>Predicted and measured forces within 30% agreement</td>
<td>End of Budget Year 2</td>
</tr>
</tbody>
</table>

Total Project Budget

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE Investment</td>
<td>$4,069,880</td>
</tr>
<tr>
<td>Cost Share</td>
<td>$964,719</td>
</tr>
<tr>
<td>Project Total</td>
<td>$5,034,599</td>
</tr>
</tbody>
</table>
Results and Accomplishments

- Ported AdvantEdge technology to high performance computing on multi-core, distributed memory systems
 - Work is on-going; building multi-level parallelization (decoupled approach)
- Seamless bi-directional CAM integration
 - Deployed at several customers sites
 - Improved: productivity, traceability, manufacturing data management, process of design change, and optimization turnaround cycle time
- Optimization values recommendation “Expert System”
 - Tested and verified with 200+ customer toolpath programs
 - Advanced algorithm and enhanced workflow significantly improve the efficiency and effectiveness of using physics-based toolpath optimization