A Novel Flash Ironmaking Process
DE-EE0005751
American Iron and Steel Institute/University of Utah
09/01/2012 - 08/31/2017

Lawrence Kavanagh, American Iron and Steel Institute

U.S. DOE Advanced Manufacturing Office Program Review Meeting
Washington, D.C.
June 15, 2016

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Project Objective

- Develop a new ironmaking process w/ significant reduction in energy consumption and CO$_2$ generation
- Blast furnace requires pelletization and/or sintering of iron ore concentrate
- Consumes large amounts of energy and carbon \rightarrow CO$_2$ emissions
- Alternative ironmaking processes must have:
 - Large production capacities (e.g., \sim1,000,000 tpy of iron)
 - Use the main raw material (i.e., iron ore) with minimal pretreatment
Technical Approach

<table>
<thead>
<tr>
<th>Current practice</th>
<th>New Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blast Furnace</td>
<td>Flash Ironmaking Process</td>
</tr>
<tr>
<td>Fe$_3$O$_4$ + C \rightarrow Fe + CO$_2$/CO</td>
<td>Fe$_3$O$_4$+H$_2$/CO\rightarrowFe + H$_2$O/CO$_2$</td>
</tr>
<tr>
<td>➢ Produces >90% iron</td>
<td>➢ Gas-Solid Suspension Reduction</td>
</tr>
<tr>
<td>➢ Large capital investments</td>
<td>Natural Gas, Hydrogen, Coal Gas</td>
</tr>
<tr>
<td>➢ Special coal for cokemaking</td>
<td>• Iron concentrate WITHOUT</td>
</tr>
<tr>
<td>➢ Needs pelletization/sintering</td>
<td>• Cokemaking</td>
</tr>
<tr>
<td>➢ Significant Energy</td>
<td>• Pelletization</td>
</tr>
<tr>
<td>Consumption and CO$_2$</td>
<td>• Sintering</td>
</tr>
<tr>
<td>emissions</td>
<td>✓ Significant Reduction in CO$_2$</td>
</tr>
<tr>
<td></td>
<td>& Energy Consumption</td>
</tr>
<tr>
<td></td>
<td>✓ Rapid reaction rate and favorable</td>
</tr>
<tr>
<td></td>
<td>Net Present Value (NPV)</td>
</tr>
</tbody>
</table>
Technical Approach

• Install, commission & conduct test on a new large scale bench reactor at the University of Utah

• Multidisciplinary team:
 • American Iron and Steel Institute
 • ArcelorMittal USA
 • TimkenSteel
 • United States Steel Corporation
 • Berry Metal Company
 • Bench reactor fabrication
 • University of Utah
 • Lead Research Organization
Transition and Deployment

<table>
<thead>
<tr>
<th>Project Objectives</th>
<th>Kinetic Feasibility</th>
<th>Proof of Concept at Lab Scale</th>
<th>Process Validation/Scale-up</th>
<th>Industrial Pilot</th>
<th>Funding</th>
</tr>
</thead>
</table>

Experimental Apparatuses

- Approaches
 1. Large scale: 75-100k tpy
 2. Modest scale: 10-25k tpy
 3. Expand U of Utah work: Similar to bench reactor but larger

- Industrial Pilot TBD (2017+)

Funding

- Federal, $0 Industry, $4.8 million
- Total, $4.8 million
- Industry, $2.7 million
- Total, $10.9 million

- $10 – 75 million Funding TBD
Benefits steel users and steel-related industry
North American steel industry is end user
To be used to produce iron as a raw material for steelmaking resulting in:
 • Direct use of iron ore concentrate
 • Lower capital cost
 • Scalable to large capacities
 • Avoidance of cokemaking
Commercialization through licensing & royalty
Sustainable as a more energy efficient and lower-emitting ironmaking process
Measure of Success

• If successful, iron will be produced at a lower cost, using less energy, and emitting less CO₂
• Potential energy savings: \(~3.5 \text{ GJ/ton Fe vs. avg. BF}\)
• CO₂ emission: Less than 36% vs. avg. BF process
• If 40% of US iron production is replaced by this process, only 3% of US natural gas production would be consumed.

<table>
<thead>
<tr>
<th>Metric</th>
<th>H₂-based process</th>
<th>Reformerless natural gas process</th>
<th>Blast Furnace process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Requirement (GJ/ton of hot metal)</td>
<td>11.3</td>
<td>14.5</td>
<td>18.0</td>
</tr>
<tr>
<td>CO₂ emission (tons/ton of hot metal)</td>
<td>0.04</td>
<td>1.02</td>
<td>1.60</td>
</tr>
</tbody>
</table>

Project Management & Budget

Total Project Budget

<table>
<thead>
<tr>
<th>Description</th>
<th>DOE Investment</th>
<th>Cost Share</th>
<th>Project Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$8,200,000</td>
<td>$2,700,000</td>
<td>$10,900,000</td>
</tr>
</tbody>
</table>

Key Inputs Criteria Date

Bench Scale Reactor
- **Go/No Go Decision # 1:**
 - Operating Temperature: 1400°C
 - Solid feed rate: >1 kg/hr
 - Operation time: >6 hr
 - Date: 11/30/2015

Testing Program
- **Go/No Go Decision # 2:**
 - Metallization: 95%
 - Min. amt. reducing gas: 3.0x
 - Date: 6/30/16
- **Go/No Go Decision # 3:**
 - Metallization: 95%
 - Min. amt. reducing gas: 1.5x
 - Date: 11/30/16
- **Milestone # 4:**
 - Metallization: 95%
 - Solid feed rate: >5 kg/hr
 - Date: 6/30/17

Industrial pilot reactor
- Design
- Cost estimate

Program Administration
- Date: 8/31/17
Results and Accomplishments

- Commissioning complete; process milestones met Q4 2015
 - Achieved and held 1400°C for eight hours
 - Achieved prescribed gas and material flow rates
Next Steps

• Begin experimental program aimed at operational flexibility, scale-up costs, process control and optimization.
• Continued process modeling
• Additional milestones later in 2016