Ultra Low Energy, Low Cost Industrial Nanomembrane Manufacturing for Desalination, Water Purification, and Remediation

DE-SC0013182
Covalent LLC

Phase 1: February 2015-November 2015
Phase 2: April 2016-April 2018

Presenter: Gayle Pergamit, Covalent LLC
Principal Investigator: Martin Edelstein, Covalent LLC

U.S. DOE Advanced Manufacturing Office Program Review Meeting
Washington, D.C.
June 14-15, 2016

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Project Objective

- **Objective**: One atomic-layer-thick, atomically precise membranes for water applications. Disruptive technology.
- Address the Water/Energy Nexus, Worldwide Water Crisis, emerging Groundwater Crisis, climate goals.
- Provide ultra high quality water at 66-99% energy savings and 50-70% cost savings over current best practice from virtually any feedstock, no matter how contaminated.

- **Problem**: Clean/cheap water is gone.
- Desalination and removing small contaminants from freshwater is energy intensive and costly.
- Using conventional technologies, water will consume ~40% of global energy expenditure.
Difficulties: Technical, Business

1. Technical Domain: Water chemistry
 - **Complex.** ~500,000 contaminants
 - **Tough.** Huge number of foulants and scalants
 - **Changing.** Day/night, seasons, environmental change, human action
 - **Local.** Foulants, contaminants vary from source to source.
 - **Extreme.** Huge pH range, hot, cold, radioactive, oily, etc.

2. Operations: Success needed on multiple criteria.
 - Performance
 - Yields of product water
 - Maintenance requirements
 - Membrane/ electrode lifespans
 - Pre-treatment and post-treatment
 - Waste disposal
 - Price
Technical: Conventional

- Today: high energy techniques or bulk, imprecise technologies with high energy requirements. **Difficult** to extract more than incremental technical improvements.

Conventional polymeric membrane used for Reverse Osmosis. High energy costs. Invites fouling, scaling, concentration polarization within the pores.
Scientific/Technical Approach-Innovation

- Rational design and classic pharmaceutical construction of atomically-precise molecular building blocks.
- Then, self-assembly of the building blocks to form 2-dimensional, 1-atomic layer, atomically-precise nanomembranes.
- Then, deposition onto a porous substrate and assembly into filtration cartridges
- Results: unprecedented filtration specificity, high flux, low energy, unprecedented surface control.

- **Covalent:** technical development and manufacturing of the cartridge.
- **Agua Via:** license holder addressing end-user engineering, marketing and sales.
- **Project risks:** surviving the GAO financial Valley of Death for manufacturing. Water makes it worse.
- **Mitigation:** Alternate financing: DOE, NSF, DOD have provided funds and **credibility.** Bonds? Loans? Private equity.
- **Timeline:** Now. To market in <3 years.
“For all of the movement focusing on engaging institutional investors and asset owners in solving water issues, there is a shocking lack of angel/venture capital in the water technology.” Scott Mosley. The Curious Case of Water Innovation.

Water is unlike any other investment

VCs low on the water educational curve: technology, business, market. Minimal experience, knowledge.

Biggest water investment year 2015: 2.2% of the clean tech funding market and 0.07% of the broader startup market. $44.17M total investment over 39 deals.

Knowledgeable VC turned us down due to manufacturing risk concerns.... 2 weeks before DOE SBIR Phase 1 grant.

AMO: 1) understands Water/Energy Nexus, 2) the technical issues, 3) technology and relevance of atomic precision.
Unique Execution Attributes

- In an influencer-mediated market, we are influence-rich.
 - Former CEOs of 1st and 2nd largest US water companies, American Water and American States Water.
 - World’s top desalination tech talent, Head of Thames R&D
 - Former US Secretary of State George Shultz, who also built out Middle East desalination as Bechtel CEO.
 - Leading engineering/installation team: UEM/Toshiba.
 - Largest US water company on Advisory Board, VP and Chief Environmental Officer, American Water
- 1st customer: Semitropic, world’s largest water bank. 5,500,000M³/45,000AF same volume as $1B Carlsbad, largest desal plant in Western Hemisphere.
- Customers in process: more California water districts, leading direct-to-consumer water sales partner with international presence US, Europe, India, China, South East Asia, Africa
Results and Accomplishments

• **2014**: membranes made one at a time. Manual process.

• **Goal**: fully automated, massively parallel, high quality, low cost, atomically precise membrane manufacturing.

• **Phase 1 2015**: achieved **Proof of Concept**. Forming multiple nanofilms simultaneously could be performed as well as making a single nanofilm.

• **Phase 2 2016-18**: Improve and expand Phase 1 mechanical design, in stages, for larger scale parallel nanofilm formation. Add automation. Adapt control system for larger scale. Add Environmental controls and add basic in-process analysis.

• **Additional DOD funds 2016-2017**: Add nanomembrane/substrate composite. Add internal and external membrane performance testing.