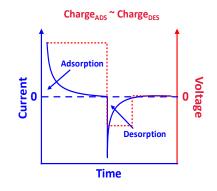
Ultrahigh-Efficiency Capacitive Devices For Continuous Water Deionization

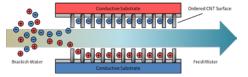
DE-SC0011909 Phase II: 7/2015 to 7/2017

> Dr. Philip Cox (Presenter) Mainstream Engineering

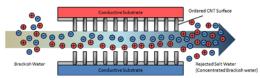
U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. June 14-15, 2016


This presentation does not contain any proprietary, confidential, or otherwise restricted information.

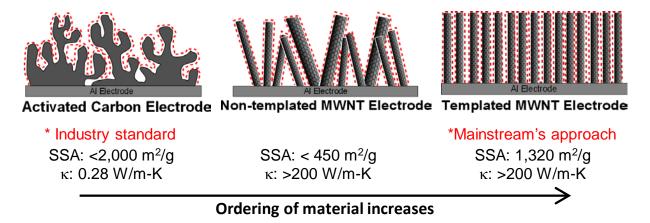
Project Objective


- The overall project objective is to develop a membrane free high efficiency system for desalination of brackish water based on capacitive electrode structures.
 - Current small scale reverse osmosis based systems are energy inefficient, require high pressure pumps and are susceptible to membrane fouling.
 - Capacitive deionization provides a path to low power requirement, energy efficient low maintenance modular systems that can easily be deployed in remote locations.
 - The major barriers is the design and control of the electrode structures.
 - Electrode structures are needed that provide highly controlled and uniform porosity to maximize the ion removal rate and efficient.
- In Phase I we demonstrated the benefits of controlled porosity for ion removal providing a 50 time improvement in extraction level per g of carbon
- The objective of Phase II is to scale up the electrodes both size and production rate and develop a prototype stack and system design

Technical Innovation

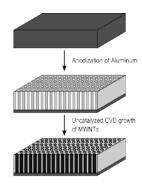

- Reverse osmosis is currently the most common method of desalination
 - Most economic in large plants collocated with power plants in coastal areas
 - Major issues include
 - Highly energy intensive with high pressure pump 55% of operating cost
 - Labor and maintenance intensive
 - High pressure requirements make safety a concern
 - Susceptible to fouling
 - Creates large volumes of concentrate effluent which must be disposed safely
 - Does not represent as good a solution for the large volumes of brackish water
- Capacitive Deionization (CDI) offers a good solution for small scale and distributed inland applications
- CDI use a low applied voltage to pull the ions out of solution
- Operates a low pressure
- Creates a low volume of concentrate – improved waste management
- Is modular and can be applied to a wide range of applications and sizes
- Can be readily automated

Charging – Electroadsorb the ions to remove salt

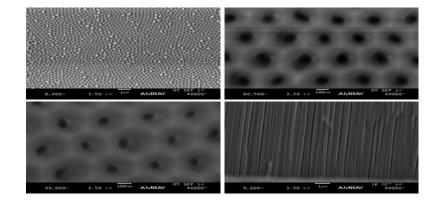


Discharging – Electrodedsorb the ions releasing them into the waste stream

Technical Innovation


- CDI needs different electrode structures than energy storage based electrodes
 - Ions must be actively removed from the flowing solution with a sufficiently high flux
 - Electrodes must be optimized to remove and store the ions not just surface charge
 - Conventional high surface area carbons for capacitors have a high surface area but poor availability for the ions

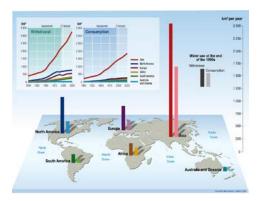
Mainstream templated electrode structures provides excellent approach to controlling both the pore size and the pore availability for maximizing ion removal


Technical Approach

- Mainstream's approach to capacitor electrode design uses templated growth of highly stable multiwall carbon nanotube (MWCNT) to produce high stability electrodes
 - Controlled potential anodization of aluminum provides a path to tunable pore size and depth due to controlled self ordering of the pore growth
 - Uncatalyzed growth of high stability MWCNTs provides a path to high stability electrode structures

- Controlled anodization produces vertically aligned, HCP pores
- Pores catalyze CVD CNT growth
- CNTs adopt template morphology
- Highly scalable and tunable fabrication method

Self ordering anodization and catalyst free MWCNT growth produces high stability tunable electrode


SEMs show highly ordered pore vertically aligned structures Phase I demonstrated high efficiency ion removal from water with small 3.8 cm² electrodes using a single cell

Technical Approach

- The technical approach in Phase II is to scale up the electrode structures and build them into a multicell stack and system
 - Scale up electrode fabrication size and production rate
 - Optimize the electrode pore size and depth to maximize the rate for a range of target ions
 - Incorporate the electrodes into a multi cell stack
 - Develop system controls to maximize both the rate and the overall efficiency of the system

Transition and Deployment

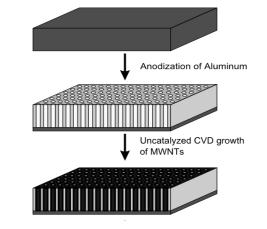
- Plentiful water supply is essential for human survival but only 0.65% is available as freshwater and withdrawals are outstripping supply
 - Brackish water represents a significant source of water
- Tunable scalable Modular design enable local point of use water
 - Commercial opportunities
 - Remote communities (mobile or stationary)
 - Individual whole house supply
 - Inland communities where disposals of the concentrate water is an issue
 - Areas where the integration with renewable energy sources is advantageous
 - Industrial water clean up and concentrate water volume reduction
 - Mobile disaster and emergency back up water supply
 - Military
 - Small portable desalination units for forward operating bases
 - Mobile applications
 - Waste water clean up (removal of toxic chemicals)

Measure of Success

- Existing small scale Reverse Osmosis systems
 - Have a high energy and power requirement (2.2 to 5 kWh/m³ of water)
 - High operator and maintenance costs
 - Requires high pressures a maintenance and safety issue
 - Large volume of concentrate waste which must be disposed of- a significant issue with inland applications
- Capacitive Deionization
 - Low energy and power requirements (<1.5 kWh/m³ of water produced)
 - Lower voltage application and low pressure pumping requirements
 - Can integrated with renewable energy sources
 - Easier to adapt to remote monitoring and operator free operation
 - Low waste production (10 to 20% of the volume of the produced water)
 - Can be applied to the clean up and recovery of enviromantal ionic contaminates
 - Phosphates, nitrates and a wide range of toxic metals

Project Management & Budget

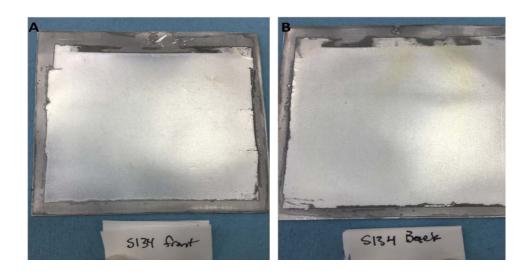
• Project: start 7/2015 (Phase II) Completion 7/2017


Milestone	Status
Scale up electrode structures to two sides 162 cm ² electrodes with controlled porosity	Complete 5/2016
Scale up the CVD process to produce multiple two sides electrodes per run	Complete 5/2016
Optimize the electrode structure for pore size and depth	In process (10/2016)
Build a multicell stack and demonstrate scaled up ion removal	In process (8/2016)
Optimize system controls for ion removal	12/2016
Build subscale prototype system with integrated controls for continuous deionization of target waste stream	2/2017

Total Project Budget	
DOE Investment	\$1.14M (Phase I and II)
Cost Share	0
Project Total	\$1.14 (Phase I and II)

Results and Accomplishments : Electrode Scale Up

- Scaled the electrodes up by a factor of 42 from the 3.8 cm² electrodes developed in Phase I
 - Scaled the electrodes to 10 cm by 10 cm
 - Anodization of both sides of the aluminum to increase the area and allow a smaller stack
- Scaled up and optimized the process conditions without losing control of the pore size, pore density or pore depth

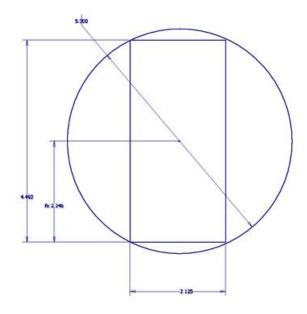


Phase I: single sided 3.8 cm²

Scaled to 2 sided large area electrodes 81 cm² per side

Results and Accomplishments : Anodized Electrode Structures

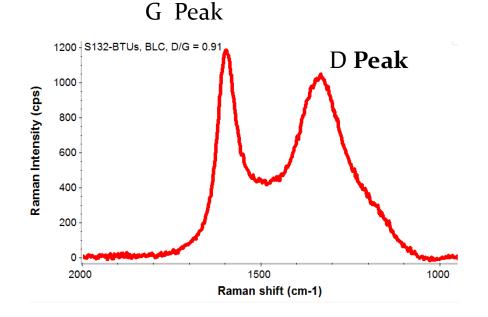
- Scaled up by a factor of 80 without loss of uniform pore distribution
 - Optimized anodization for multiple samples per run
 - Improvements in the masking technique to obtain square samples in process

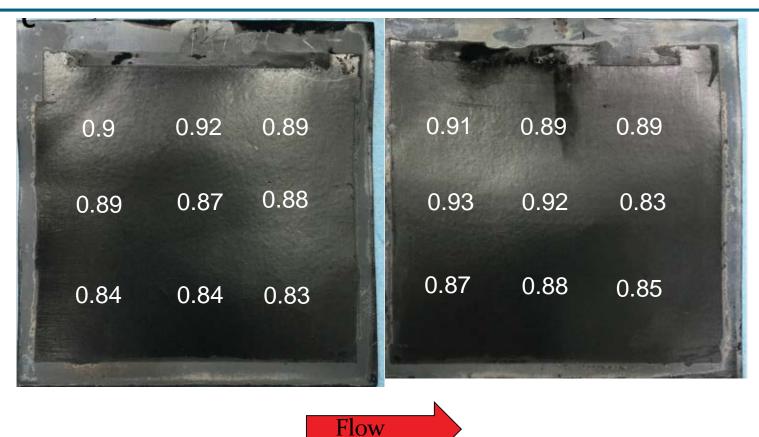


SEM of multiple locations on both sides show uniform pore distribution

Results and Accomplishments : Scale up of CNT growth

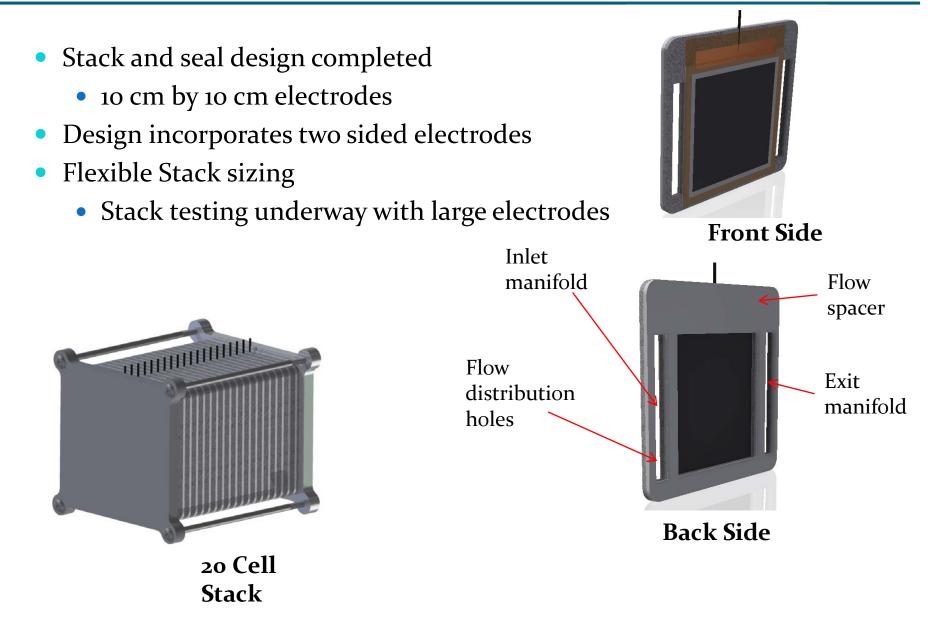
- Process scale up performed at CVD equipment for both area and number of samples per run
- Electrode size maximized for the available process tube size is 8 in diameter
- Titanium fixture designed to allow MWCNT growth on 5 electrodes per run
 - can be increased to 9 electrodes per run with existing equipment




Initial fixture designed with a 5 mm spacing to ensure no depletion of reactant gasses

Results and Accomplishments : Raman Spectroscopy of CNT Coated Electrodes

- Raman Spectroscopy provides a measure of the CNT carbon quality
 - higher quality provides improved stability and durability
 - The lower the ratio the higher the level of ordered graphitic structure
- Typical Raman spectra of scaled up electrodes shows improved graphitic CNT carbon compared to Phase I



Results and Accomplishments : Uniform CNT Growth Over Electrode Surface

- Excellent CNT quality over the entire surface of both sides of the electrode
 - Produces a high stability electrode structure
- Less than ~5% variation in D/G ratio across the sample

Stack and Seal Design

