IACMI-The Composites Institute
U.S. Department of Energy Advanced Manufacturing Office
Program Review

Craig A. Blue, PhD
CEO
June 2016

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Agenda Topics

<table>
<thead>
<tr>
<th>Item</th>
<th>Agenda Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introductions</td>
</tr>
<tr>
<td>2</td>
<td>2015 Review and 2016 Overview</td>
</tr>
<tr>
<td>3</td>
<td>Organizational Updates</td>
</tr>
<tr>
<td></td>
<td>• Operations</td>
</tr>
<tr>
<td></td>
<td>• Membership</td>
</tr>
<tr>
<td></td>
<td>• Technology Roadmapping</td>
</tr>
<tr>
<td></td>
<td>• Projects</td>
</tr>
<tr>
<td></td>
<td>• Capabilities Expansion: Partnerships, Equipment and Facilities</td>
</tr>
<tr>
<td>4</td>
<td>2016/2017 Strategy and Future Successes</td>
</tr>
</tbody>
</table>
2015

Building the Network

✓ January 2015
President Obama, VP Biden announce IACMI

✓ June 2015
Inaugural IACMI Members Meeting with >350 attendees
Purdue breaks ground on $50M composite facility

✓ September 2015
IACMI announces Call for Projects
IACMI team presentation to over 700 attendees at SPE & Automotive Composites Conference
VP Biden announces IACMI’s scale-up facility in Detroit

✓ October 2015
MOU announcement with CPC in NY establishing IACMI satellite in the Northeast
IACMI ACMA and Composites One partnerships established and announced to over 7,500 attendees at CAMX.

Institute officially launches in June 2015
Engaging the Network

- **January 2016**
 Members Meeting in Detroit with over 300 attendees

- **February 2016**
 Over 130 executed membership contracts with 120 additional interested members in the pipeline

- **March 2016**
 - SHYFT Innovation Leadership Conference in Chattanooga features Craig Blue as a thought-leader for national innovation in design and manufacturing
 - Technical Roadmapping event in Knoxville brings over 100 people to IACMI HQ

- **April 2016**
 - Tennessee workforce training event in collaboration with Composites One
 - STEM event to educate high school robotics students on advanced materials, specifically composites (100 attendees)
 - IACMI leadership and external presence at Hannover Messe, Germany

- **May 2016**
 - JEC Americas Atlanta- external presence with ORNL
 - Technical Roadmapping phase 2 in Michigan with 110 attendees
 - Toray project launch

- **June 2016**
 - 15 IACMI Interns in place
 - Workforce training event at new Wind Technology Facility (NREL, Colorado)
2016 Continued....

July 2016

- MOU with Composites Recycling Technology Center and Peninsula College
- IACMI Members Meeting in Indianapolis
- Purdue Manufacturing Innovation Institute ribbon cutting

August 2016

- University of Tennessee IACMI Fibers and Composites Center facility naming announcement
- Purdue workforce training event in collaboration with Composites One

September 2016

- Colorado Wind Technology Center facility ribbon cutting
- CAMX Outreach event with over 10k attendees

November 2016

- Michigan 250 Ton Vertical Press Installed
- Michigan workforce training event in collaboration with Composites One
Current Membership

Membership by Level:

<table>
<thead>
<tr>
<th>Membership Type</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consortium</td>
<td>91+</td>
</tr>
<tr>
<td>Resource</td>
<td>12</td>
</tr>
<tr>
<td>Premium</td>
<td>13</td>
</tr>
<tr>
<td>Charter</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>125</td>
</tr>
</tbody>
</table>

+ Includes ACMA membership Updated 3/31/2016

- The partners are public and private and represent 32 states.
- IACMI- The Composites Institute has with ACMA, the leading composites industry association with over 500 members in 49 states.
Technology Roadmapping

Goals

- Integrate the views and establish stakeholders consensus from value chains in vehicles, wind, and CGS
- Identify other markets in which IACMI capabilities and expertise may be reasonably extended
- Identify & assess pathways for sustainability after year 5
- Develop and periodically revise a targeted technology roadmap
- Mission-critical, market-specific, and cross-market challenges, opportunities and technology solutions

Roadmapping Topics

Knoxville, March 2016
- Modeling & Simulation
- Recycling
- Nondestructive Evaluation
- Reinforcements, Resins, Additives, and Intermediates
- Additive Technologies
- Design, Prototyping, and Validation

Detroit, May 2016
- Multi-material joining
- Standardization and Certification
- Crashworthiness and Repair
- Large Scale Manufacturing
- IACMI Sustainability-Part 2
Coming Soon....

- Memorandum of Understanding signing event on July 1, 2016 with DOE, elected officials, IACMI and Peninsula College

- Expanding IACMI facility access to the West Coast and capabilities in recycling

- CRTC
 - Currently participating in Toray project with IACMI
 - Already partnered with Peninsula College

- Peninsula College
 - Currently offers an Advanced Composites Certification Course
 - Composites lab facility in partnership with CRTC
• Purdue announced $50 million composites facility.

• In September, Vice President Biden announced the IACMI colocation with LIFT in Detroit, Michigan expands capabilities and collaboration with auto industry ecosystem.

• MOU signed with the Composite Prototyping Center in New York.

• Future growth
Building on Existing Strong Partnerships

Industry, Academia and Government Stakeholders

A partnership of world-class companies including:

- Local Motors
- Ford
- BASF
- Dassault Systemes
- Boeing
- Lockheed Martin
- Dow
- Dupont

A partnership of outstanding small and medium sized organizations including:

- Techmer PM
- Toho Tenax
- Tri Design
- MVP
- Magnum Venus Products
- Cincinnati

Top universities including:

- The University of Tennessee
- UT Research Foundation
- Vanderbilt University
- University of Colorado
- University of Kentucky
- University of Dayton Research Institute
- University of Dayton
- Colorado State University

The Institute for Advanced Composites Manufacturing Innovation
IACMI Projects
First Group of Selected Projects

<table>
<thead>
<tr>
<th>Project</th>
<th>Project Lead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermoplastic Composite Parts Manufacturing Enabling high Volumes, Low Cost, Reduced Weight with Design Flexibility</td>
<td>DuPont</td>
</tr>
<tr>
<td>Enabling Composite Processing through the OEM Assembly Line</td>
<td>PPG</td>
</tr>
<tr>
<td>Rapid Carbon Fiber Prepreg Molding Technology for Automobile Structural Parts</td>
<td>Toray Composites</td>
</tr>
<tr>
<td>Low Cost Pultruded Carbon Fiber Reinforced Polymer (CFRP) Composites for Spar Caps</td>
<td>TPI Composites</td>
</tr>
<tr>
<td>BAAM Materials Development and Reinforcement with Advanced Composites</td>
<td>Local Motors</td>
</tr>
<tr>
<td>Composite Components in Vehicle Drivetrains</td>
<td>Eaton</td>
</tr>
</tbody>
</table>

6 recommended for rework
2 not aligned with IACMI
Thermoplastic Composite Parts Manufacturing Enabling High Volumes, Low Cost, Reduced Weight with Design Flexibility

- **Challenge:** High cycle time for production of continuous CF thermoplastic composites increases costs.

- **Approach:** Novel materials and processes that allow flexible pre-pregs (Fiberflex™) combined with Rapid Fabric Formation technology to provide customizable fiber orientations via thermal bonding to significantly improve cycle time, cost, and waste.

- **Impact:** *Use of emerging materials for impregnation and new approaches for tow coating and fabric formation will lower costs of high volume composites production by 20%.*

- **DuPont**, Fibrtec, Purdue, MSU,
- Vehicles
- TC Phase 1
- TRL/MRL Impact: from 3 to 6/7
Enabling Composite Processing through the OEM Assembly Line

- **Challenge:** Incompatibility with standard adhesives and coatings processes limit low-cost composite scale-up.

- **Approach:** Develop and demonstrate adhesives and e-coat that meet OEM specification when processed at temperatures compatible with low-cost composites.

- **Impact:** Accelerates market adoption via use of standard techniques for component production: PPG and OEM partner Ford will identify component for volume production.

- **PPG Industries**, Ford, Michigan State
- **Vehicles**
- **TC Phase 1**
- **TRL/MRL Impact:** from 4 to 6
Rapid Carbon Fiber Prepreg Molding Technology for Automobile Structural Parts

- **Challenge:** High costs and cycle times limit use of CFC in automotive structural parts.

- **Approach:** A supply-chain centric (ecosystem based) approach that integrates material selection, molding methods, preform design patterns, together with waste stream utilization will decrease costs and cycle times.

- **Impact:** *Integrated supply chain-based improvements to materials selection, component design, form set-up, process, and scrap management will decrease costs by 15% for target components.*

- **Toray Composites (America), Inc., Zoltek, Reichhold, Janicki Industries, Globe Machine Manufacturing Co., CRTC, ACMA, MSU**

- **Vehicles**

- **Project 3.3 TC Phase 1:** validation of the approach through flat panel demonstration

- **TRL/MRL Impact:** from 4/5 to 6/8
Low Cost Pultruded Carbon Fiber Reinforced Polymer (CFRP) Composites for Spar Caps

- **Challenge:** CFRP costs limit its utilization in wind turbine blades.
- **Approach:** Application of highly aligned textile PAN CF fibers in pultruded plates for infused spar caps with high specific stiffness and acceptable compressive strength will enable longer wind turbine blades to increase Annual Energy Production.
- **Impact:** 20% reduction in blade weight at comparable cost.

- **TPI Composites**, DowAksa, Dow, Strongwell, NREL, ORNL, UTK, Vanderbilt, (GE)
- Wind Turbines
- TC Phase 1
- TRL/MRL Impact: from 4 to 7

The Institute for Advanced Composites Manufacturing Innovation
BAAM Materials Development and Reinforcement with Advanced Composites

- **Challenge:** Integration of big area additive manufacturing and composite materials for vehicle applications requires new design and materials approaches to meet longevity and crash performance requirements.

- **Approach:** Integrated design and materials selection, together with novel, low-cost reinforcing techniques will be used to optimize components for vehicle application.

- **Impact:** *Creation of multiple US facilities producing cars with substantial advanced composite make-up - 9 new facilities, 900 new skilled jobs by 2017, complementary impact across a broad range of manufacturing sectors leading to 50% reduction in design to manufacturing cycle time.*

- **Local Motors, ORNL, MSU**
- Vehicles
- TC Phase 1
- TRL/MRL Impact: from 4 to 5 (Phase I)
Composite Components in Vehicle Drivetrains

- **Challenge:** Carbon-composite-metal shows promise for drivetrain components, but additional challenges in value proposition, cycle time, product performance, and multi-material interfaces remain.

- **Approach:** Composite material processing and interface capability will be simulated and demonstrated to develop a composite-and-metal drivetrain product leading to product performance verification.

- **Impact:** 160 kg weight savings for HD truck transmission - equivalent to reduction of 50M gal diesel/year consumption in US.

- **Eaton, MSU, UTK**
- Vehicles
- Enterprise
- TRL/MRL Impact: from 4 to 6
IACMI Projects
3.2 and 4.2
Optimized Carbon Fiber Production to Enable High Volume Manufacturing of Lightweight Automotive Components

- **Challenge**: Carbon fiber consistency and production rate, intermediate production & mechanical performance, molding cycle times, recycle of in-plant scrap

- **Approach**: OEM-Material Supplier-Tier 1 joint development of supply chain to develop, integrate and application-optimize carbon fibers, resin, composite intermediates, molding methods, automation, modeling, and waste reduction

- **Impact**: *Deploy carbon composite components on multiple 100k+ units/yr vehicle platforms to enable early stage mass adoption of technology*

- **Ford**, Dow, DowAksa, MSU, ORNL, Purdue, UKY, UT, Vanderbilt

- Vehicles
- Project 3.2
- TRL/MRL Impact: from 4-5 to 7
Thermoplastic Composite Development for Wind Turbine Blades

• **Challenge:** Carbon fiber composite reinforced polymers show promise for large scale wind turbine components, but challenges in manufacturing costs, performance, and recyclability limit their application.

• **Approach:** Development of thermoplastic materials to lower production costs and improve recyclability of wind turbine blades and demonstration of applicability to spar caps.

• **Impact:** Implementation of carbon fiber composite materials for wind turbine blades will enable larger scale and increased efficiency.

• **NREL, ORNL, Johns Manville, Colorado School of Mines, TPI, Arkema, Vanderbilt, University of Tennessee**

• Wind
• Project 4.2
• TRL/MRL Impact: from 3 to 4
IACMI Capabilities, Expansion and Facilities
Capabilities Expansion: Oak Ridge National Laboratory Carbon Fiber Licensing Opportunity

- IACMI partner, Oak Ridge National Laboratory, has demonstrated a production method estimated to reduce the cost of carbon fiber as much as 50% and the energy used in production by more than 60%

- IP Agreements

- Significant textile PAN benefits
Capabilities Expansion: Oak Ridge National Laboratory Carbon Fiber Licensing Outcome

- Exclusive invention license to Knoxville company, RMX Technologies
- New innovation has the potential to revolutionize the composites industry creating significant manufacturing impact
Capabilities Expansion: Facilities and Equipment

Equipment

- Michigan: Press (2, Schuler and Milacron) representing over $2M investment
- Purdue: 250 Ton Vertical Press Resin Transfer Molding (RTM) Facility, 330-Ton Injection Molding Machine, Tape Layup Machine, all representing over $2M investment

Facilities

- Indiana Manufacturing Institute
- Michigan Corktown Lightweighting Facility
- Colorado Wind Technology Expansion
- Tennessee plans

The Institute for Advanced Composites Manufacturing Innovation
Tennessee Facilities

IACMI Fibers and Composites Manufacturing Center at UTK

Capabilities added since August 2015

- 400 square feet of composites manufacturing
- 20 undergraduate (Freshman to Senior), 8 graduate (MS, PhD) students and 3 post docs engaged in IACMI R&D.

- Equipment:

IACMI/MDF Composites Center

- Seamless interaction of students and staff between UT and ORNL/IACMI ~ 30 students per semester
- Workforce development and training
- Summer internships
- Intermediate to large scale composite fabrication
- Discontinuous & continuous fiber processing
- Range of tools
- Plus…..FUTURE EXPANSION
Capabilities: Indiana Facilities

• Indiana Manufacturing Institute broke ground in June 2015 and had researchers working in the facility by June 2016.

• $50M Composites facility

• Purdue equipment plans:
 – 250-Ton Vertical Press
 – Resin Transfer Molding (RTM) Facility
 – 330-Ton Injection Molding Machine
 – Tape Layup Machine
 – These represent more than $2M total cost

1 year to complete
“Lightweighting is critical to our future… We want to own the 21st century in innovation and composites are a big part of that goal. That’s why we’re making a $40 million investment in composites in the Composites Institute [IACMI] co-locating in a facility in Detroit,” said Vice President Joe Biden.

- Multi-material lightweighting facility with over $40M invested

- Equipment capabilities:
 - Most recent acquisitions include two presses (Schuler and Milacron) representing over $8M investment

- 100,000 square feet for two complementary innovation institutes
Colorado: IACMI Wind TA Facility Expansion

IACMI Focused Needs:
- Low cost carbon fiber
- New materials evaluation
- Reactive thermoplastic scale up
- Segmented 3D printed tooling
- Low cost, high quality spar cap manufacture
- Large area rapid NDE
 - In-situ measurement
 - Post molding inspection
- Performance Modeling and manufacturing Simulation
- Workforce development: Technician Training (CCT), Internships and Engineers
2016 IACMI Workforce Training Events

TARGET:
Established workforce Mid-career/Students Students

Online
• CCT (Composite Certification Tech) course in collaboration with ACMA (American Composites Manufacturers Association)
• Encyclopedia of Resources

Hands-On Demonstrations
• In collaboration with Composites One, four hands-on demonstrations in four different states will train approximately 500-600 manufacturing employees this year

Partnership Demonstrations
• In collaboration with IACMI partners, The University of Tennessee and Oak Ridge National Laboratory, over 200 students have been introduced to composites materials during STEM demonstrations and training

Internships
• 15 IACMI internships, 5 different locations
• EERE STEM Internships, 45 fully funded student opportunities in the 2016
Workforce Training
IACMI-led STEM Education for Younger Students

"Dear Dr. Blue:
Thank you and your team for hosting the Composites Workshop this week. I brought three students from Roane County and we had a wonderful time learning about composites. The presentation from Dr. Vaidya was interesting and the University of Tennessee students had great demonstrations set up for the attendees. The best part was our high school students talking to the UT engineering students - all of whom were fun, articulate and encouraging. It was wonderful.

I’d especially like to thank the UT students: Brandon, Adam and of course, Jimmy - the Ping Pong Cannon expert, for their extensive effort in getting to know the high school students. You all made an impact on their career choices."

SILVIA MENDE
First Robotics Mentor
Roane County Optometrist
April 25, 2016
Workforce Training
IACMI-led STEM Education for Younger Students
Workforce Training: April 2016
IACMI/Composites One

• 150 attendees representing:
 – 23 states
 – Entry level to experienced professional
 – Small, medium and large organizations
 • GE
 • BASF
 • MVP

• Three-day Regional Economic Impact of at least $75k

Attendees gained hands-on experience during a Reusable Bag session in Oak Ridge National Laboratory’s Manufacturing Demonstration Facility (MDF)

The Institute for Advanced Composites Manufacturing Innovation
Workforce Activities: IACMI Internship Program

- Administered by ORAU
- 15 graduate or undergrad interns at IACMI technology areas
 - 4 in Michigan
 - 4 in Indiana
 - 4 in Tennessee
 - 2 in Colorado
 - 1 in Ohio
- Interns selected and managed by IACMI TA Directors
- Interns will attend and present at July IACMI Members Meeting
- Estimated cost: $165,000
July 2016: IACMI Members Meeting in Indiana

- 300 attendees expected:
 - From at least 20 states
 - Entry level to experienced professional
 - Representing government, academia and small, medium and large industry organizations
 - Collaboration opportunities

- Indiana Manufacturing Institute ribbon cutting ceremony
 - $50M Composites Facility at Purdue University

- Short term regional economic impact estimate is over $150k