

Combined Aero and Underhood Thermal Analysis for Heavy Duty Trucks

Prasad Vegendla and Tanju Sofu
Argonne National Laboratory

Rohit Saha, L.K. Hwang and Mahesh Kumar Cummins Inc.

Project ID#: VS132

Vehicle Technologies - Annual Merit Review - Jun 8, 2016

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Lead: T. Sofu and S.N.P. Vegendla

(Argonne Natl. Lab.)

Partners: L.K. Hwang, R. Saha and M. Kumar

(Cummins, Inc.)

Project Funding (Duration): \$1,050K over multiple years with matching funds from Cummins

Funding Source	FY12	FY13	FY14	FY15	FY16
VSST	\$350K	\$125K	\$100K	\$0K	\$50K
Industry/Govnt . Cost Share	50/50 cost share				

Goals

- Development of a computational framework for combined underhood and aerodynamics analysis as a novel predictive analytical capability
- Quantify the impact of cooling system optimizations on overall energy efficiency through assessment of changes in aerodynamics drag coefficient
- Also address emission control issues to meet the new diesel engine requirements and increased electrification of the engine system

Timeline

- Project signed in Sep 2012
- Project started in Oct 2012
- Project 60% completed

Supported by L. Slezak (Vehicle System Optimization)

Objectives

- The analytical capability being developed is aimed to help with the overall heavy-vehicle optimization through analysis of interdependent phenomena
 - Vehicle external aerodynamics
 - Cooling system performance
 - Underhood thermal analysis
- Optimal design of vehicle thermal system is important for energy efficiency
 - Less than one-third of the total fuel energy provides useful mechanical work, remainder is lost through the exhaust system and heat rejection
 - Predicting the engine and component temperatures under the hood accurately speeds up design cycle and helps achieve greater fuel efficiencies through coolant system optimizations
 - With impact on aerodynamics

Approach

FY13

Perform Aerodynamics and Thermal Analysis

Selected Vehicle CAD Surfaces
CAD Import and processing for
CFD simulations

FY14/FY15

Vehicle Aerodynamics and Thermal Improvements

FY15/FY16

Vehicle Platooning
Aerodynamics and Underhood
Thermal Analysis

Vehicle Underhood Optimization Fan-Shroud Optimization

Project Milestones

FY13

- Two different heavy-duty vehicles CAD models were processed to run the 3D Computational Fluid Dynamic (CFD) aerodynamic drag and underhood thermal simulations.
- Validated aerodynamic drag result with two different commercially available software,
 StarCCM+ and Fluent.
- Aerodynamic drag analysis performed for each component in heavy-duty vehicle (e.g. mirrors, klaxon, extended deflectors etc.)

FY14

- Medium-duty delivery truck, CAD model were processed to run the 3D-CFD aerodynamic drag and underhood thermal simulations.
- Validated aerodynamic drag result with two different commercial software, StarCCM+ and PowerFlow®.
- Optimized aerodynamic drag (fuel economy) configuration was identified.

FY15

- Vehicle platooning simulations performed for five different configurations;
 - Single-lane traffic with leading and trailing vehicle.
 - Two-lane traffic with leading and trailing vehicles in two separate lanes.
 - Two vehicles are in side-by-side lanes.
 - Three vehicles are in side-by-side lanes.
 - Two leading vehicles are in side-by-side lanes and one vehicle followed in one of the leading vehicles.

FY16

- Cooling package optimization in heavy-duty vehicles (fan-shroud optimization)
- Vehicle platooning underhood thermal simulations performed for two different configurations;
 - Single-lane traffic with leading and trailing vehicle.
 - Two-lane traffic with leading and trailing vehicles in two separate lanes.

Accomplishments: Aerodynamic Drag Analysis of

Effect to Cd =

+11,51%

Heavy-Duty Truck [FY13]

Aerodynamic drag analysis performed for each component.

CAB ANALYSIS WITHOUT TRAILER

Cases	A; Projection Area (m²)	F; Drag Force (Newton)	Cd; Drag Coef.	Cd Effect %	Incremental @100 KM/HR Fuel Economy Effect %
1	8.236	1854.05	0.588	-10.90	5.45
2	8.236	1944.84	0.617	-6.54	3.27
3	8.354	2056.60	0.643	-2.56	1.28
4	8.327	2044.60	0.641	-2.82	1.41
5	8.247	1952.40	0.618	-6.30	3.15
6	8.236	1949.51	0.618	-6.31	3.16
7 (Baseline)	8.454	2136.00	0.660	0.00	0.00
8	8.755	2254.30	0.673	1.91	-0.95
9	8.851	2240.08	0.661	0.17	-0.08
10	8.851	2225.73	0.657	-0.47	0.24
11	8.851	2254.46	0.665	0.81	-0.41

CAB +TRAILER ANALYSIS

Cases	A; Projection Area (m²)	F; Drag Force (Newton)	Cd; Drag Coef.	Cd Effect %	Incremental @100 KM/HR Fuel Economy Effect %
12	9.794	2589.34	0.691	-10.32	5.16
13	9.240	2397.71	0.678	-11.98	5.99
14 (Baseline)	9.794	2887.37	0.770	0.00	0.00

VS132_2016 DOE Vehicle Technologies Program Annual Merit Review, Washington DC

N

N N N

FLAT BED

TRAILER

N N N N N

Accomplishments: Aerodynamic Drag Analysis of Medium-Duty Delivery Truck [FY14]

YAD: Yaw avg. aerodynamic drag reduction

Max fuel benefit: 11% for Case-5 Configuration

Vehicle configurations: (i) Base configuration, (ii) Case-1, (iii) Case-2, (iv) Case-3. (v) Case-4. and (vi) Case-5.

Run#	Model Details	
Base configuration	Original medium-duty vehicle	
Case -1	Base config. + wheel covers	
Case -2	Base config. + side skirts	
Case -3	Case -2 + no-klaxon + lowered front bumper	
Case -4	Case -3 + optimized side extender and roof deflection	
Case -5	Case -4 + aerodynamic mirrors + rounded corners	

The important findings:

- The optimum curvature radius of the rounded trailer edges found to be 125 mm, with an arc length of 196.3 mm.
- Aerodynamic drag reduction increases with dropping clearance of side skirts between wheels and ground.
- Aerodynamic drag reduction increases with an extension of front bumper towards the ground.

Accomplishments: Aerodynamic Drag Analysis in Vehicle Platooning [FY15]

Max fuel benefit: 24.2% @ 30 ft

Max fuel benefit: 7.1% @ 150 ft

- Aerodynamic drag performance roughly double of the team fuel savings.
- In Single-lane traffic, team fuel savings drops with vehicle separation distance.
- ❖ In two-lane traffic, team fuel savings raises with vehicle separation distance due low velocity zone @ front cabin of trailing vehicle.
 Vegendla et al. (2015) Investigation of Aer

VS132_2016 DOE Vehicle Technologies Program Annual Merit Review, Washington DC

Vegendla et al. (2015). Investigation of Aerodynamic Influence on Truck Platooning. SAE International technical paper, 2015-01-2895. DOI:10.4271/2015-01-2895.

Accomplishments: Platooning Underhood Thermal

Analysis

Single Lane – Trailing Vehicle

Lower air mass flow rates (negative performance) through Trailing Vehicle due to low velocity zone from Leading Vehicle. Air mass flow rates improved with vehicle separation.

VS132_2016 DOE Vehicle Technologies Program Annual Merit Review, Washington DC

Lower air mass flow rates but higher mass flow rates (~100%) than in 0 RPM.

Lower mass flow rates leads to higher temperatures in heat exchangers [Q=m $C_p \Delta T$]

CAC: Charge Air Cooler

Accomplishments: Platooning Underhood Thermal Analysis (cont.)

Two Lane – Trailing Vehicle

60

Vehicle Separation Distance [ft]

90

Lower air mass flow rates (negative performance) but negligible compared to Single Lane traffic and insignificant to the vehicle separation distance

150

Accomplishments: Platooning Underhood Thermal Analysis

Single Lane – Trailing Vehicle [Constant Heat Vs. Variable Heat Rejection]

Variable Heat

Condenser

CAC

Radiator

30

Vehicle Separation Distance [ft]

Fan Speed: 1400 RPM; Wind-tunnel Inlet Velocity: 55 mph Const. heat rejection Rates:

Condenser – 11 kW, CAC- 24.25 kW, Radiator- 55 kW

Temperature rise is lower compared to constant heat rejection in trailing vehicle [the amount of heat rejection is less due to lower aerodynamics drag leads to lower fuel consumption and ultimately lower heat rejection from engine].

Accomplishments: Platooning Underhood Thermal Analysis (cont.)

Two Lane – Trailing Vehicle [Constant Heat Vs. Variable Heat Rejection]

Fan Speed: 1400 RPM

Constant Heat: Temperature rise is independent to the vehicle separation distance and it is insignificant for variable heat rejection case

Accomplishments: Fan-shroud Optimization

CAD model: Shroud Inner Surface

Optimized model: Shroud Inner Surface

Position Sensitivities [surface optimizes @ higher position sensitivities

Cooling Package + Engine

- 1.4% raise in cooling air flow observed with fan-shroud optimization.
- ❖ Finding possible further improvements with StarCCM+ model, to increase the cooling flow rates.

Analysis conducted for:

Heavy-duty cooling package including engine

Boundary conditions

- Computational domain Inlet Air Velocity 20kph and at ambient temperature
- Fan speed 1400 RPM

Volume mesh across YZ-plane

	Origina I	Optimized
Set point: Heat exchanger outflow [kg/s]	3.80	3.852 (~1.36% ↑)

Vegendla et al. (2016). Fan-shroud Optimization Using Adjoint Solver. SAE COMVEC-2016, Abstract accepted.

Collaborations

Cummins Inc. Columbus, Indiana

Path Forward

- Optimization of the heat exchanger cooling air mass flow rate to further increase the thermal performance.
- Vehicle platooning underhood thermal transient analysis of varying heat rejection rate based on the fuel consumption using fan on and off condition with set point temperature.

Conclusions

- Fan-shroud optimization:
 - 1.4% raise in cooling air flow calculated with fan-shroud optimization.
- Vehicle platooning underhood thermal analysis:
 - At 0 rpm fan speed; 70% lower air mass flow rates (negative performance) observed in Trailing Vehicle due to low velocity zone from Leading Vehicle. In single-lane traffic, air flow rates improved with vehicle separation distance.
 - At 1400 rpm fan speed; 30% lower air mass flow rates observed in Trailing Vehicle due to low velocity zone from Leading Vehicle. In single-lane traffic, air mass flow rates improved with vehicle separation distance.
 - In two-lane traffic, at 0 and 1400 rpm, lower air mass flow rates, but negligible compared to single-lane traffic and insignificant to the vehicle separation distance.
 - *In variable heat rejection*, the temperature rise is lower (<4°C) compared to constant heat rejection (<15°C) in trailing vehicle [the amount of heat rejection is less due to lower aerodynamic drag leads to lower fuel consumption and ultimately lower heat rejection from engine].
 - In two-lane traffic and constant heat rejection; the temperature raise is independent to the vehicle separation distance and it is insignificant in variable heat rejection case.

Conclusions (Cont.)

- Vehicle platooning aerodynamic drag analysis:
 - In Single-lane traffic, max fuel benefit was 24% at 30ft vehicle separation and fuel savings drops with separation distance.
 - In two-lane traffic, max fuel benefit was 7% at 150ft and fuel savings raises with separation distance.
- Medium-duty delivery truck aerodynamic drag optimization:
 - Maximum fuel benefit was 11% for Case-5 Configuration (optimized configuration)
 - The optimum curvature radius of the rounded trailer edges found to be 125 mm, with an arc length of 196.3 mm.

