2016 DOE Vehicle Technologies Program Review

Research and Advanced Engineering

Next Generation Three-Way Catalysts for Future, Highly Efficient Gasoline Engines

Christine Lambert Ford Research and Advanced Engineering 9-June-2016

Project ID: PM067

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Research and Advanced Engineering

Timeline

- Start Date: 1-Oct-2014
- End Date: 30-Sept-2017
- Status: ~ 50% complete

Budget

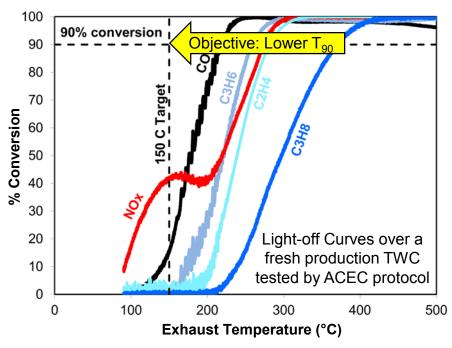
- Total funding: \$1,690,470
 - DOE share: \$752,376
 - Contractor share: \$338,094
 - Additional ORNL \$600,000
- Funding in FY 2015
 - \$301,228 (+ ORNL \$600,000)
- Funding in FY 2016
 - \$257,494

Barriers

- Long lead times for materials commercialization
- Cost

Partners

- Ford Motor Company
- Oak Ridge National Lab
- University of Michigan


Relevance

Research and Advanced Engineering

> Overall Objective

- Develop new three-way catalysts and/or catalyst systems capable of achieving durable 90% activity [HC, CO, NOx] at 150°C.
 - Today's automotive three-way catalysts (TWCs) become highly efficient only when exhaust temperatures reach 250-400°C.
 - The next generation of engines will be more efficient and thus produce cooler exhaust at low load conditions
 - TWC activity will be required at lower temperatures to satisfy strict emission standards with the next generation of automobiles.

Current Budget Year Objectives

- Identify/characterize new materials, and predict performance and costs.
- Identify/capitalize on synergies between various catalyst materials within and between partners
 Project ID: PM067

Milestones

Research and Advanced Engineering

Milestone	Status
 Confirm Reactor Comparability Cross lab comparisons and test protocol were confirmed 	Completed Nov. 2015
 Commercial vs. New Material Performance – Status (BP1) Tested and compared commercial TWC material to new materials developed in-house 	Completed Nov. 2015
 Down-select Promising Materials/Confirm Synthesis and Characterization Path(s) Agreed to keep all material synthesis pathways active through this budget period 	Completed Oct. 2015
 Confirm Test Protocols and Down-select Criteria Agreed on test protocol and laboratory systems to allow cross-lab comparisons. 	Completed Oct. 2015
 Confirm Benchmark State of the Art TWC Agreed no new benchmarking was necessary. 	Completed Oct. 2015
 Commercial vs. New Material Performance – Status (BP2) Evaluations of new materials made in house and comparison to the commercial TWC material will continue throughout project as new materials show promise. 	Ongoing
 System Model Assessment – Status New assessments will be completed as necessary. 	Mar. / Jun 2016
 Cost Model Assessment – Status New assessments will be completed as necessary. 	Sept. 2016
 Down-Select Promising Catalysts Determine which catalysts and/or catalyst materials should be carried over into Budget Period 3. 	Sept. 2016
Proj	ect ID: PM067

Approach/Strategy

Identify strategies to improve precious

metal dispersion and promote activity

Research and Advanced Engineering

Reductant Surfactant Make and characterize new materials. in water in water and predict performance and costs Pd-surfactant complex Leverage cross-laboratory analytical capabilities Calcination Oxide overlayer on oxide support Air. 500 C Pd@mesoporous SiO₂ Support particle Dispersed metal particle Challenge: Prolonged exposure to high temperature automotive exhaust Improved dispersion and enhanced low gases leads to sintering of both temperature activity on using nanophase active metal and support, leading to particles of ceria-zirconia loss of activity Sintered meta OH Sintered support Ce/Zr NPs Oxide overlayer Approach: Overcoat a high surface area oxide with a second oxide layer to reduce Aging sintering and promote precious metal activity Pd Impregnation OAK RIDGE • Pd NPs (pH control)

One-pot synthesis of Pd@SiO₂ core-shell catalyst

OH

Al₂O

Reduced Pd

nanoparticles

SiO₂

Precursor

particles with

Pd@SiO,

surfactant

Stabilized by the surfactant

Partnerships

Research and Advanced Engineering

Ford Motor Company

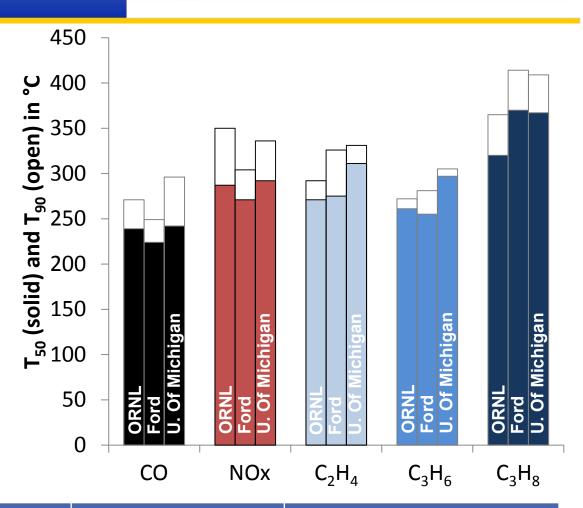
- Modified Support Materials
 - Use novel, high surface area, layered oxides as precious metal supports
- Cost and Performance Models
 - Estimate finished catalyst costs; predict vehicle tailpipe performance.

Oak Ridge National Laboratory

- Modified Support Materials
 - Investigate modification of supports for thermal stability, adherence of metal to the support, and tailoring the metal-support interactions for optimal catalytic performance.
- Ternary Oxide Development as PGM Substitute
 - Investigate the functionality of low-PGM or PGM-free, ternary-oxide catalyst systems, starting with CuO-CoO-CeO (CCC).

University of Michigan

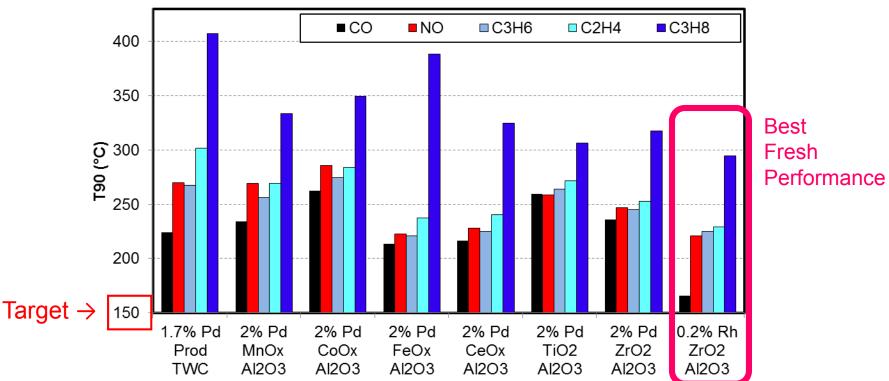
- Core-Shell Model Catalysts (incl. monolith cores)
 - Investigate catalyst architectures containing a core-shell conformation composed of a metal nanoparticle surrounded by a metal oxide shell.
 - Synthesis will begin with silica, alumina, and ceria-zirconia-based model catalyst systems



Research and Advanced Engineering

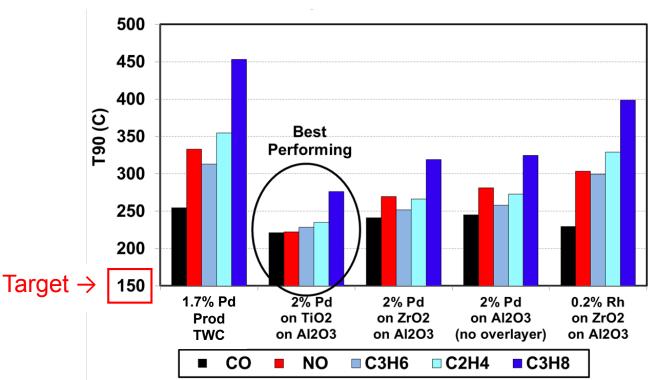
"Round Robin" confirmed reactor similarities with aged modern TWC

- TWC aged by Ford
 - 50h 4-mode durability
 - 960°C max bed temperature
- Evaluated at all partner organizations using protocol developed by ACEC tech team
- Good agreement at each research lab even though sample weights range from 0.1 to 2.0 g


ACEC stoich protocol:

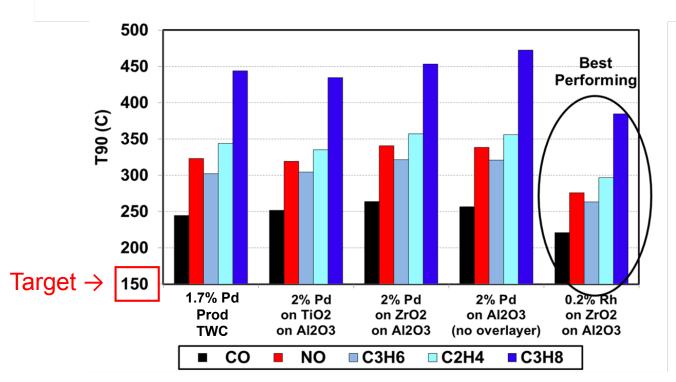
[H ₂ O] = 10%	[O ₂] = {stoichiometric}	[CO ₂] = 5%	[NO] = 1000ppm
[CO] = 5000ppm	$[C_3H_8] = 150$ ppm	$[C_{3}H_{6}] = 500$ ppm	$[C_2H_4] = 525ppm$
[H ₂] = 1700ppm	N_2 or Ar Balance	0.2 – 3.4 slm flow	0.1 – 2.0 g crushed monolith

Research and Advanced Engineering


Performance of Catalysts in the Fresh State

- Fresh production TWC does not satisfy the T90 target of 150°C for any exhaust gas
- Some of the overlayers with 2% Pd outperformed the production TWC
- The Rh on ZrO₂ overlayer had the best fresh performance
 - Fresh CO T90 near program target

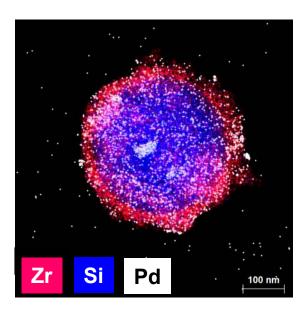
Performance After 950°C Oven Aging in Air/H₂O

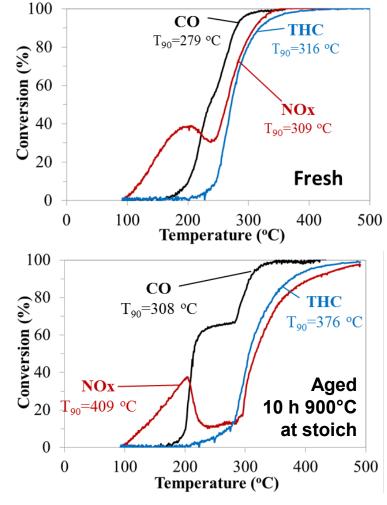

- All of the over-layer formulations had better performance than the production TWC after lean aging at 950°C
- The 2% Pd on TiO₂ overlayer provided the best performance
 - Performance improves after lean aging!

Research and Advanced Engineering

Catalyst Results After 4-Mode Aging 960°C max

- After 4-mode aging, the 0.2% Rh on Zr over-layer provided the best performance
- Lean aging not appropriate for catalysts intended primarily for stoichiometric operation

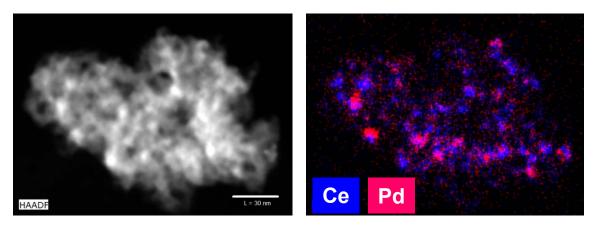


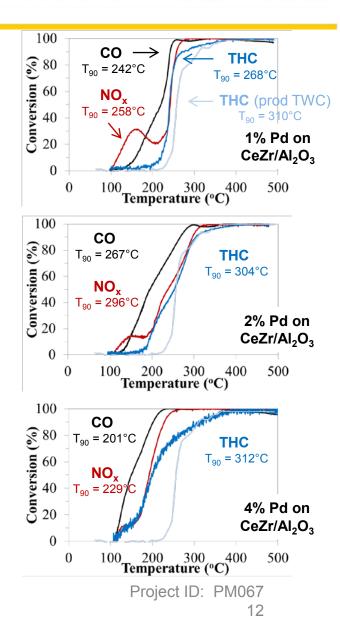

Research and Advanced Engineering

Goal: Improve ZrO_2 surface area through deposition on SiO_2 core

- Previous lean data suggested Pd/ZrO₂ was promising
- > Coat a SiO₂ with ZrO_2 shell then add 1% Pd
- ➢ Pd particles are on ZrO₂ shell, but initial deposition has poor dispersion → improvements underway

Elemental maps while rotating a fresh sample ±40° (TEM).

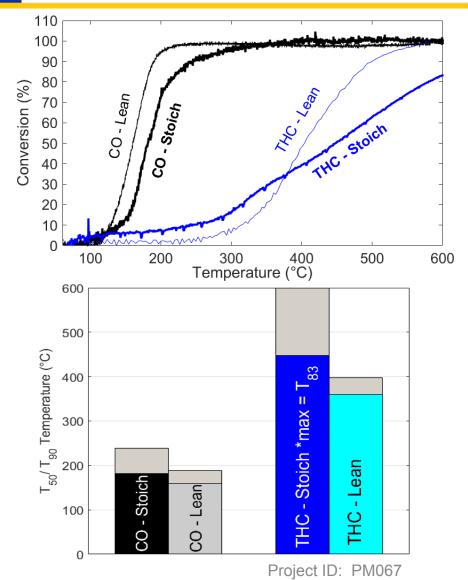




Research and Advanced Engineering

Enhanced activity through deposition of well defined nanoparticles of Ce-Zr with targeted deposition of Pd

- Dispersion of Ce-Zr nanoparticles on Al₂O₃
- Target deposition of Pd on nanoparticles on Ce-Zr
 - TEM used to confirm both nanoparticles and targeted deposition

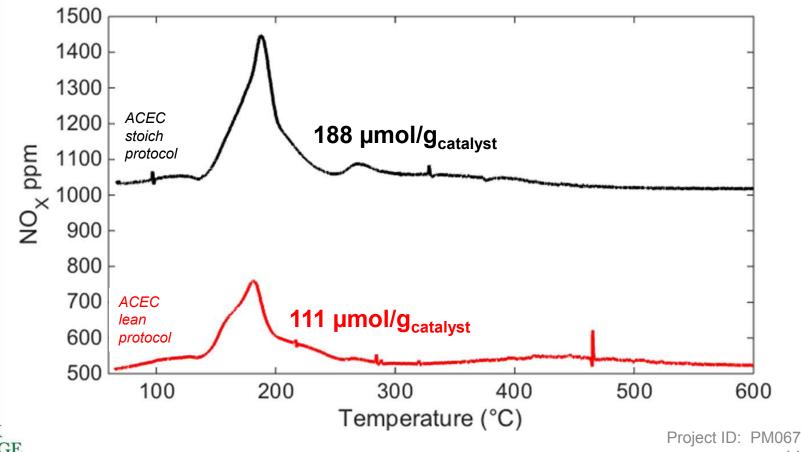

Research and Advanced Engineering

Ternary Oxide as PGM substitute shows promise, but only for CO

- CuO-Co₃O₄-CeO₂ (CCC) catalyst has shown inhibition resistance for lean CO oxidation
- Also a good CO oxidation catalyst under stoichiometric conditions
- CCC is clearly poor for HC and NO and can only be considered as a "specialist" for CO

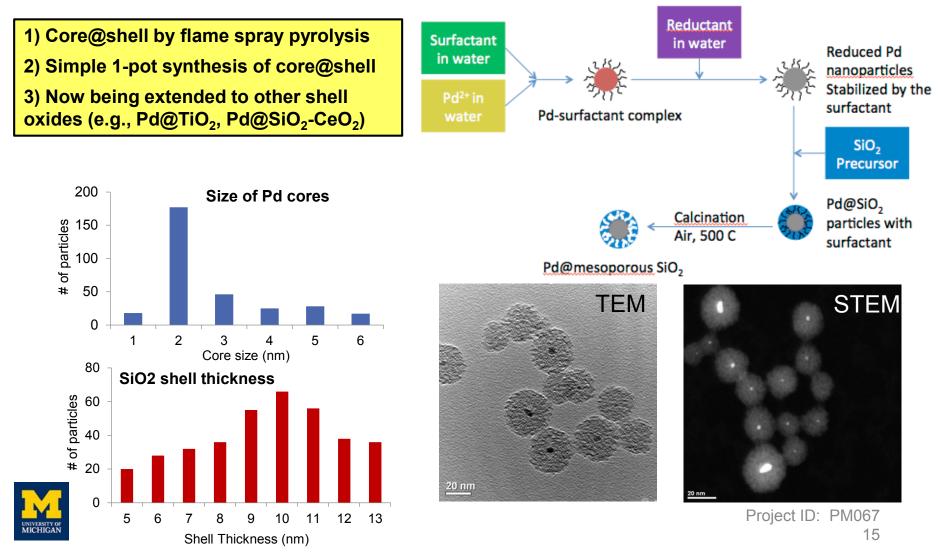
Continuing work

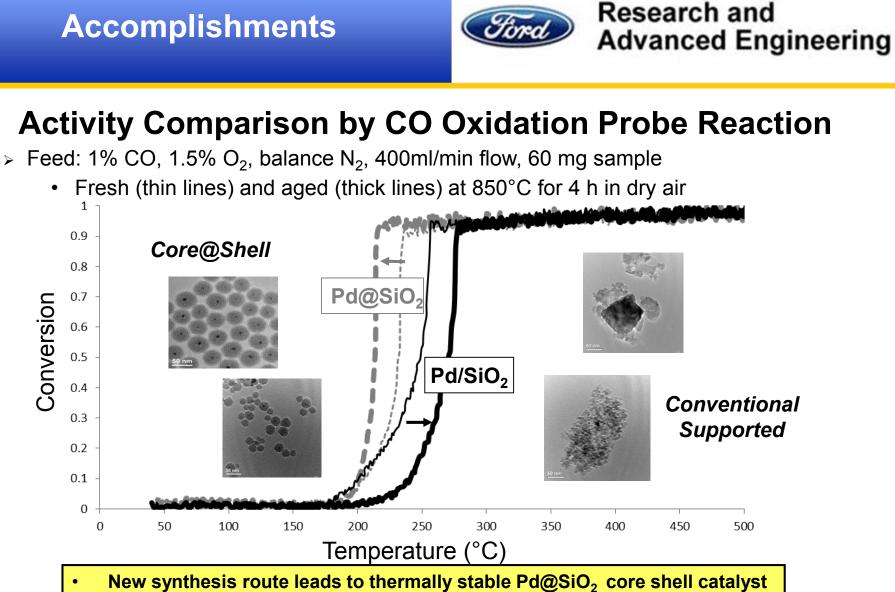
- CCC catalyst as a CO oxidation "specialist"; use less PGM in system
- > New Formulations:
 - Increase surface area, Cu content, and Cu-Ce interface active site
 - Improve the already good CO oxidation activity

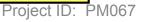


ional Laborator

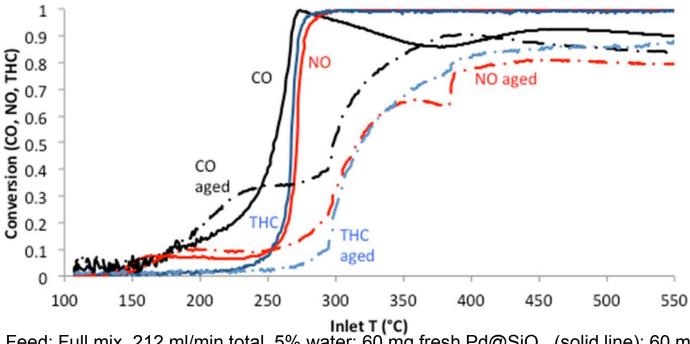
Research and Advanced Engineering


CCC also shows the ability to store and release NOx at low temperatures




Research and Advanced Engineering

One-Pot Synthesis of Pd@SiO₂ Core@Shell Catalyst


- Pd@SiO₂ is better dispersed after aging at 850°C
- Pd@SiO₂ shows improved light-off behavior after aging at 850°C

Research and Advanced Engineering

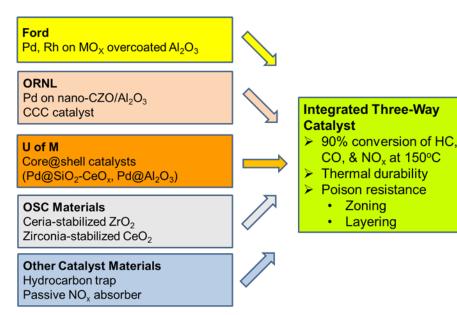
Test Results for Hydrothermally Aged Pd@SiO₂ Core@Shell Catalysts

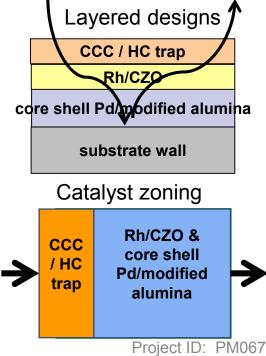
Feed: Full mix, 212 ml/min total, 5% water; 60 mg fresh Pd@SiO₂ (solid line); 60 mg aged Pd@SiO₂ (dotted line); aging in air at 800°C for 10 h with 6% water

- Simple one-pot synthesis for $Pd@SiO_2$ core-shell catalyst has been developed
- Core-shell catalyst shows better activity than supported Pd/SiO₂ catalyst
- Pd@Al₂O₃ and Pd@CZO will be more hydrothermally durable

Remaining Challenges and Barriers

Research and Advanced Engineering


- Long lead times for materials commercialization
 - Use materials with known, high stability in automotive exhaust
 - Use commercially available support materials as a base and add new materials onto base to support metals in novel ways
 - Combine novel materials into a complete catalyst
 - Partner with major automotive catalyst supplier in third year
- ≻ Cost
 - Develop stable, high surface areas for better metal dispersion
 - Balance PGM within system to take advantage of lower costs when possible
 - Investigate base metals as PGM substitute
 - Fewer processing steps are desirable


Proposed Future Work

Research and Advanced Engineering

- Identify and capitalize on synergies between various catalyst materials
- Demonstrate full aging (hydrothermal-chemical) and performance from coated monolith cores using most promising materials
- Identify system solutions and estimate vehicle performance and cost
 Layered designs

Response to Previous Year's Comments

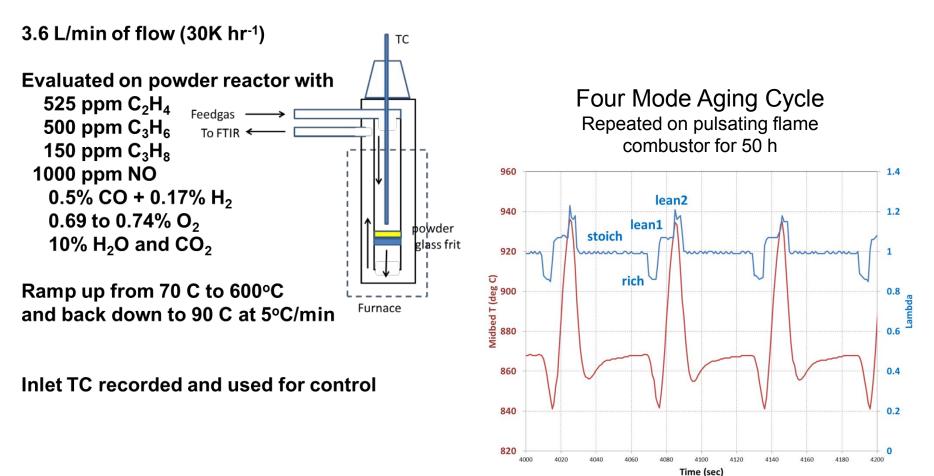
Research and Advanced Engineering

> This project has not been previously reviewed

Research and Advanced Engineering

- <u>Relevance</u>: TWC materials required to be active at lower temperatures to satisfy strict emission standards with the next generation of automobiles
- <u>Approach</u>: Make and characterize new materials, and predict performance and costs; leverage cross-laboratory analytical capabilities
- > <u>Collaboration</u>: Full collaboration between Ford, UM, and ORNL
- <u>Technical Accomplishments</u>
 - Commercial TWC "round robin" was used to demonstrate reactor-to-reactor compatibility amongst all three partners
 - Overlayers of metal oxides on high surface area alumina successfully resulted in equal or better TW performance in aged state, most notably Pd/TiO₂/Al₂O₃ and Rh/ZrO₂/Al₂O₃
 - Pd on zirconia shell and ceria-zirconia nanoparticles showed some promise; more work needed
 - Ternary base metal oxides = "CO specialist"; also stores NOx at low temperatures
 - Successful demonstration of one-step core@shell synthesis; pursuing additional shell materials with improved stability during aging
- Future work: continue towards shorter lead times for materials commercialization and lower costs
 Project ID: PM067

Research and Advanced Engineering


Technical Backup

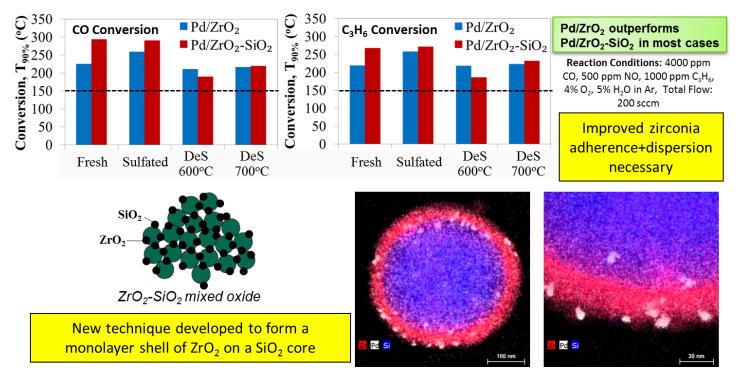
Research and Advanced Engineering

ACEC Test Protocols

1 gram of powder

Research and Advanced Engineering

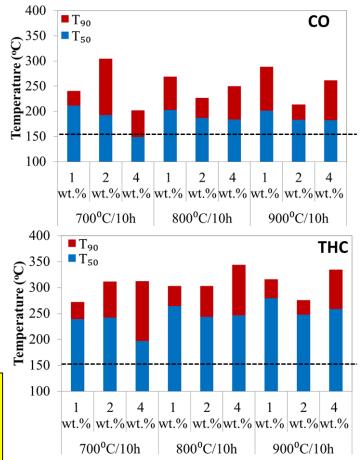
Synthesis of Layered Oxide Supported Catalysts



Research and Advanced Engineering

Lean-based study is motivation of new synthesis of $SiO_2@ZrO_2$ core@shell improves ZrO_2 coverage of SiO_2

- Approach: optimize support for Pd catalysts by combining high acidity of ZrO₂ with high surface area of SiO₂; coated SiO₂ with ZrO₂
- ZrO₂ coating introduces surface acidity
 - High acidity: benefit on HC oxidation vs. high basicity: high sulfur adsorption
 - Pd/ZrO₂ has both strong acidic and basic sites, while Pt/Si has neither

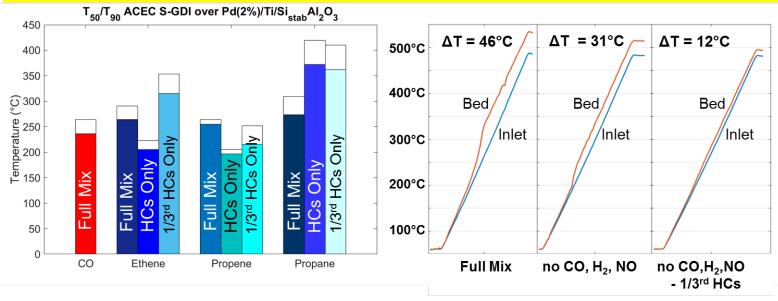

Research and Advanced Engineering

Improved CO and THC conversion over the 2 wt.% Pd/CeZr-Al₂O₃ catalysts after aging at 900°C for 10 hours

- 1 and 4 wt.% Pd/CeZr/Al₂O₃ catalysts deactivate after hydrothermal aging at 800 and 900 °C.
- HT aging at 800°C: improved performance of the 2 wt.% Pd/CeZr/Al₂O₃ catalyst for both CO and THC conversion.
- HT aging at 900°C: 2 wt.% Pd/CeZr/Al₂O₃ catalyst has the lowest T_{50,90}'s compared to the 1 and 4 wt.% Pd/CeZr/Al₂O₃, indicating that it is the most durable catalyst at elevated temperatures.

ACEC protocol (S-GDI)

 $\begin{array}{l} 100 \mbox{ mg cat. / flow: } 333 \mbox{ sccm / water bath: } 60^{\circ}\mbox{C}\\ CO_2:13\%, O_2: \mbox{Stoic} - 0.05\%, \mbox{H}_2\mbox{O: } 10\%, \mbox{CO: } 0.5\%, \mbox{NO: } 0.10\%, \mbox{H}_2: \mbox{O. } 167\%, \mbox{C}_2\mbox{H}_4: \mbox{O. } 0.525\%, \mbox{C}_3\mbox{H}_6: \mbox{O. } 0.05\%, \mbox{C}_3\mbox{H}_8: \mbox{O. } 0.015\%, \mbox{ Ar balance} \end{array}$



Research and Advanced Engineering

Exotherm Effects Significant

Sequential tests were conducted to determine the effect of varying exotherm and conditions on overall performance.

The streams were: Full S-GDI Mixture, S-GDI (CO and NO removed), and S-GDI (CO and NO removed, 1/3rd Hydrocarbons by ppm). Results:

- CO and NO are a significant inhibitor to Ethene and Propene performance Performance increased significantly with the removal of CO.
- Exothermic effects can drastically increase Ethene and Propene performance Performance decreased with the removal of 2/3rd hydrocarbons and subsequent loss of exotherm.