Active, Tailorable Adhesives for Dissimilar Material Bonding, Repair and Assembly

Dr. Mahmoodul Haq¹ and Dr. Lawrence T Drzal²

¹ Assistant Professor, Civil & Environmental Engineering
² University Distinguished Professor, Chemical Engg. & Material Science

Composite Vehicle Research Center (CVRC)
Michigan State University

Project ID #: LM087
OVERVIEW

TIMELINE
- **Start Date:** October 1, 2013
- **End Date:** September 30, 2016
- **Percent Complete – 75%**

BUDGET
- **Total Project Funding:** $599,999
- **Funding Received in Budget Period 3:** (01/2015 – 12/2015) : $236,629
- **Funding for Budget Period 4:** (01/2016 – 09/2016) : $0

BARRIERS ADDRESSED
- **Joining and Assembly**
 - Light-weight, reversible bonded joints
- **Performance**
 - Enhanced Damage Resistance of Joints using nanoparticles
- **Predictive Modeling Tools**
 - Development of Experimentally Validated Simulations.

Partners / Collaborations
- Eaton Innovation Center, MI.

Project Lead
- Michigan State University, Composite Vehicle Research Center (CVRC).
JOINING / ASSEMBLY

Joining is inevitable, allows versatility in assembly and repair, reduces costs and time.

Considered a ‘weak-link’ in the structure due to complex phenomena & interactions.

Mechanical Fastening

PROS:
- a) Repair and Re-assembly,
- b) confidence in use as it is commonly used

CONS:
- a) Adds Weight,
- b) machining holes,
- c) delamination in composites,
- d) stress-concentrations

Adhesive Bonding

PROS:
- a) Light Weight
- b) load distribution over larger areas

CONS:
- a) permanent joint (cannot be repaired or re-assembled),
- b) lack of confidence in common use to reliability of bonding.

There is a Need for a JOINING TECHNIQUE that can INHERIT the MERITS of BOTH bolted & bonded techniques while still being compatible with current assembly line practices.
This project addresses three concerns on: a) **joining dissimilar materials**, b) **experimentally validated simulations** and c) **joining techniques relevant and capable of easy transition to industrial applications**

Key Technical Gaps for Systems for Light-Duty Vehicles

<table>
<thead>
<tr>
<th>System</th>
<th>Three Most Significant Technical Gaps Impeding Widespread Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Structures (Composites)</td>
<td>Lack of understanding of properties with respect to fracture and energy absorption</td>
</tr>
<tr>
<td>Body Structures (Metals)</td>
<td>Lack of technology for joining dissimilar materials</td>
</tr>
<tr>
<td>Chassis and Suspension</td>
<td>Inadequate properties (strength, ductility, corrosion resistance, etc.)</td>
</tr>
<tr>
<td>Closures, Fenders, and Bumpers</td>
<td>Fast and reliable processes for joining dissimilar materials are not available</td>
</tr>
<tr>
<td>Engines and Transmissions</td>
<td>Materials needed for advanced technology propulsion systems are not cost competitive</td>
</tr>
</tbody>
</table>

Summary of Progress: Objective, Approach, Relevance, Milestones and Accomplishments

OBJECTIVE: To demonstrate the feasibility of ‘ACTIVE Adhesive’ technology for structural joining of similar / dissimilar substrate materials.

APPROACH: An integrated experimental and numerical computational materials (materials by design) based approach. Multi-use, Repair & Reassembly?

MATERIALS USED:

- **Substrates:**
 - Aluminum
 - Steel
 - CFRP
 - GFRP

- **TP Adhesives:**
 - Nylon-6
 - Polycarbonate
 - Polyolefins
 - ABS (current)

E. Dissemination of Results Journals + Conferences + Invited talks + Roadmaps

B. Lab-scale Evaluation & Experimental Characterization

C. Development of Design Tools and Database

A. Processing, Material Development & Optimization

Thermoplastics + GnP = Active Adhesive Pellets and Films
<table>
<thead>
<tr>
<th>Milestone</th>
<th>Type</th>
<th>Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activation and Bonding</td>
<td>Technical</td>
<td>The novel active adhesive couples with microwave radiations to activate, bond/un-bond resulting similar joints</td>
<td>SUCCESS!!</td>
</tr>
<tr>
<td>Structural Properties Defined</td>
<td>Go / No-Go</td>
<td>The novel active adhesive structural properties (lap-shear) pre- and post- exposure to corrosive environments is better or equal to requirements in industrial practices with conventional bonding techniques</td>
<td>SUCCESS! GO ✓</td>
</tr>
<tr>
<td>Demonstration of Structural Properties</td>
<td>Technical</td>
<td>The structural properties (lap-shear) pre- and post- exposure to corrosive environments is better or equal to requirements in industrial practices with conventional bonding techniques</td>
<td>SUCCESS!!</td>
</tr>
<tr>
<td>Proven Efficiency</td>
<td>Technical</td>
<td>The NDE techniques used can prove the efficiency of the activation and re-assembly/bonding of the resulting joints</td>
<td>SUCCESS / In-Progress</td>
</tr>
<tr>
<td>Characterization of Material Properties</td>
<td>Go / No-Go</td>
<td>The experimental characterization of material properties of the adhesive and adherend can be successfully performed to provide input to robust simulations (next phase)</td>
<td>SUCCESS / In-Progress GO ✓</td>
</tr>
<tr>
<td>Model Using Simulations</td>
<td>Technical</td>
<td>The simulations developed model the behavior and failure phenomena accurately without making crude assumptions and successfully agree with a wide range of experimental tests. NOTE: Experimentally Validated Simulations! An effort of 50% or more will be on experiments to validate and increase the robustness of the models, and to create reliable databases.</td>
<td>In Progress Large-scale components & Environmental Testing</td>
</tr>
</tbody>
</table>
Progress: Active Adhesives – Film & Joint Production

PRODUCTION OF ACTIVE ADHESIVES

Thermoplastic + GnP = Active Adhesive Pellets

Injection molded discs → Adhesive films + spacers

PRODUCTION OF JOINTS

Aluminum Web

3D Woven CFRP Preform

GFRP base

Adhesive film

Microwave Horn

T-/Pi-joint AL-CFRP-GFRP joint

Single lap AL-CFRP joint
Progress: Technical Accomplishments/Results

Effect of GnP Functionalization

Functionalization of GnP:
- Improve mechanical properties + Toughness + Multi-functionality
- a) aliphatic epoxy (AE), b) phase separated elastomeric carboxy terminated butadiene nitrile rubber (CTBN), & c) styrene-butadiene-methyl-methacrylate (SBM) triblock polymer.
- SBM functionalization has shown the greatest potential.

Improvement in Adhesive Flexural Strength

<table>
<thead>
<tr>
<th>GnP Content (%)</th>
<th>Flexural Strength, MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>80</td>
</tr>
<tr>
<td>1%</td>
<td>85</td>
</tr>
<tr>
<td>3%</td>
<td>90</td>
</tr>
<tr>
<td>5%</td>
<td>95</td>
</tr>
</tbody>
</table>

Improvement in Lap-joint Shear Strength

<table>
<thead>
<tr>
<th>GnP Content (%)</th>
<th>Shear Strength, MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>10</td>
</tr>
<tr>
<td>1%</td>
<td>12</td>
</tr>
<tr>
<td>3%</td>
<td>14</td>
</tr>
<tr>
<td>5%</td>
<td>16</td>
</tr>
</tbody>
</table>

- For 5 wt.% GnP, on average flexural strength of Nylon-6 was enhanced by > ~10%.
- For 1 wt.%, 3 wt.%, on average flexural strength of Nylon-6 enhanced by > ~20%.
- At 3 wt.%, the lap-shear strengths of GnP + SBM-functionalized adhesives were improved by **more than 30%** relative to pristine adhesives.
Progress: Technical Accomplishments/Results

Conventional Thermal Vs Microwave Bonding

- **Lap-shear joints strengths:**

 ![Lap-shear test diagram]

 ![Graph showing lap-shear strengths](image)

 Microwave activated joints showed better performance. This could be due to several reasons.

 - **Firstly,** the adhesive heats up uniformly through out the bond-area. This may reduce the residual stresses developed in the adhesive and thereby increase the joint-strength.

 - **Secondly,** in thermally bonded systems, edges are heated first, as the heat is transferred via conduction from the substrates to the adhesives, and via convection through the edges of the adhesives, thereby degrading the adhesives at the edges and reducing strengths.

 - **Lastly,** in microwave assisted heating, the substrate does not degrade as the adhesive is heated rapidly and in most cases does not exceed the T_g of the substrate.
Progress: Technical Accomplishments/Results

Targeted Heating of Adhesives

- **TOP RIGHT:** 3 wt.% and 5 wt.% GnP films heat faster
- **BOTTOM RIGHT:** As the GnP content increases, the power required to reach target temperature reduces.
- **BOTTOM:** Instead of constant temperature, constant power shows promise in rapid heating of adhesives relative to substrates. Experiments with embedded sensors in adhesive and composite substrates are in progress to corroborate these findings.

GnP modified film temperature profiles

- 1% GnP FILM
- 3% GnP FILM
- 5% GnP FILM

Adhesive Used: Nylon-6
Melting Point: 230 °C

Comparing temperature of adhesive and substrates at a constant power for a constant time

Comparison of required powers to heat up GnP modified films

Power, watt

Time, sec

Adhesive Used: Nylon-6

Melting Point: 230 °C
Progress: Technical Accomplishments/Results
Al - CFRP : Lap-Joint Assembly

- **Reversible Bonding of AL-CFRP Single Lap-Joint with Nylon6 + xGnP**

Approaches

- Two approaches: a) constant 500 watts and b) three step approach, temperature control, variable power.

Progress: Technical Accomplishments/Results

Al - CFRP : Lap-Joint Assembly

Approaches

- a) Schematic of Bonding,
- b) real joints,
- c) Completed Joints.

- Three steps VFM recipe exhibited rapid heating process relative to the constant power recipe, e.g., to reach at 150 °C,
- The constant power recipe took about 445 secs, whereas the three steps VFM recipe took only about 180 secs. Plus we have lower consumption of power
- In short, the process is tailorable! Depending on substrate, adhesive, GnP content and processing time required, it can be designed accordingly

Similar process carried out for disassembly
Progress: Technical Accomplishments/Results

Dissimilar material Pi-/T- joints (out-of-plane)

- **Reversible Bonding of multi-material T-/Pi-Joints with Nylon6 + xGnP**

- **FOR BONDING**, each individual sample was placed inside the MC2100 VFM cavity.

- Metallic block weighing ≈ 450 g, were used to provide process hold down weight.

- **Bottom right figure shows Temp. (red + green) vs. Power (blue) variations**

- **GFRP substrates allowed rapid heating of adhesive $\sim 230 \, ^\circ\text{C}$ within 400 s. This heating was slowed down with CFRP base. Further optimization is necessary.**

- Nevertheless, successful assembly, dis-assembly, and re-assembly carried out.
Progress: Technical Accomplishments/Results
Testing at High Temperatures

Materials characterization under varying temperature

- As expected, increase in temperature reduced the tensile strengths.
- Increase in thermal conductivity of adhesive due to GnP may have contributed to further decline in tensile strengths at high temperatures. This was evident at 350 F wherein tensile strength dropped as GnP content increased.
Progress: Technical Accomplishments/Results Overview & Approach in Modeling

- Study of adhesive characterization
 - Effective stiffness, toughness, thermal & electrical conductivity.

- Study of Multi-material joining
 - Structural behavior, modeling damage/failure, progressive damage and development of experimentally validated simulations (EVS)

Experimentally Validated

Nano-scale models to help predict the structural behavior beyond the experimental matrix in this study
Progress: Technical Accomplishments/Results
Nano- / Micro- Scale Modeling

Material Models

Unit Cell / Realistic MODELING

Microstructure of 2 wt.% Pristine GnP in Polycarbonate

Microstructure of 2 wt.% functionalized GnP in Polycarbonate

Effect of XGnP in Polycarbonate

Prediction of Adhesive behavior with XGnP

- Realistic modeling and successful prediction of nonlinear behavior
- Successful modeling of GnP/polymer interfaces to take functionalization into account.
- Material model can be directly input to structural models or can linked as multi-level models
Progress: Technical Accomplishments/Results
Numerical Modeling – Lap Joint

- **Adhesive Material Model from Nano-scale input into structural models**

- **GnP increases stiffness of adhesives**
- **Clear effect on reduction of peel stresses.**

- **Analytical Models:**
 - **To be used as thumb-rule / conservative cut.**
 - **Plot on right: Goland-Reissner model**

 Key Assumptions: substrates are thin-beams
 - **Future work will include Hart-Smith and advanced models that include tip-plasticity.**

![Graph showing stress distribution](image)
Progress: Technical Accomplishments/Results
Prototype – Assembly/Dis-assembly/Healing

ASSEMBLY + TESTING + HEALING

Pristine + Healed - Web Pull-out of Pi-joint- Test #1

Pristine + Healed - Web Pull-out of Pi-joint- Test #2
Progress: Technical Accomplishments/Results
Simulations Vs Experiments

- 2D, plane stress models were simulated in ABAQUS®
 - The adhesive was modeled with a finer mesh
 - Allows for detailed modeling of flaws
- Use Experimentally Validated Simulations
- Predict Behavior of All possible damage locations
- Obtain a Design Space, 3D - Performance Surfaces!
- Develop Design Charts for easy use (in the field !)

Can We Simulate THIS?
With and without Flaws/Damage!

P_u
Progress: Technical Accomplishments/Results
Prototype – Activation – Assembly + Healing

- Commercially available polyolefin based Thermoplastic (PRODAS 1400 hot-melt) used with 3 wt.% GnP
- Successful Activation and Bonding of Steel shaft to CFRP rotor
Response to Previous Year Reviewers’ Comments

<table>
<thead>
<tr>
<th>Reviewers’ Comment</th>
<th>Action Taken and Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1. The reviewer liked the way the project is advancing and hopes the present momentum can be maintained to the end of the project.</td>
<td>The investigators have used the lessons learned from the first and second year as a launch-pad and further carried the momentum to include prototypes of dissimilar materials including CFRP, Al, Steel. Further healing/recovering in-service degradation has been proved.</td>
</tr>
<tr>
<td>#2. The reviewer judged that the approach as not clearly appropriate for this study and questioned exactly how the investigators will use a rational computational materials approach to advance this study. The reviewer observed that no evidence is given in this presentation, and said that there is an apparent random walk rather than a directed approach.</td>
<td>The reviewers’ observation and comments are accurate and appreciated. At the end of the last review, experimental validation and development of multi-level numerical models were in progress. In the current performance period considerable progress in development of nano-, meso- and macro-scale models has been performed, and a modeling scheme that predicts structural joint behavior from nano-scale to structural level has been developed. Plus, novel NDE tools have been used to further increase the robustness of the developed models.</td>
</tr>
<tr>
<td>#3. The reviewer cited good results but offered it would be better to use an adhesive other than nylon, because the auto industry makes only limited use of nylon due to its affinity for moisture.</td>
<td>Agree. The investigators have used nylon-6, polycarbonate and a commercially used automotive adhesive (Prodas 1400). Additionally, with recommendations from program managers and industry input, ABS will also be evaluated in the rest of the performance period.</td>
</tr>
<tr>
<td>#4. The reviewer stated resources were insufficient, recommending the team should include the current car industry participation and also add other industries where bonding is a significant part of their businesses.</td>
<td>Agree. This project has gained considerable attention from industry. Invited talks and conference presentations have paved the way for exchange of ideas and communications. While the car industry is directly not involved in this work at the moment, their input is being incorporated in this project and future work will directly involve them.</td>
</tr>
</tbody>
</table>
Collaborations & Coordination

<table>
<thead>
<tr>
<th>Collaborators / Partners</th>
<th>Details</th>
</tr>
</thead>
</table>
| Eaton Corporate Research and Technology (PARTNER) | ✓ Low-inertia, light-weight, supercharger applications
✓ High-speed rotational/torsional testing
✓ Non-destructive Evaluation at high speeds
✓ Metal – to- metal and Metal to composite Bonding
✓ In-situ repair, assembly and disassembly |
| U.S. Army TARDEC (In-kind Collaborator) | ✓ Periodic review of progress and guidance on relevant materials for automotive applications and path forward. |
| OakRidge National Laboratory (ORNL), Carbon Fiber Technology Facility (CFTF): (In-Kind Collaborator) | ✓ Low-cost, Large-Tow Carbon Fiber.
✓ Guidance of possible automotive applications |
CHALLENGES / BARRIERS:

Semi-crystalline thermoplastics are very susceptible to processing parameters, specifically mold temperatures and can lead to high scatter in resulting structural properties. ADDRESSED: Amorphous thermoplastics and consistent processing methods have shown promise. Also, multiple thermoplastics are being explored.

Microwave Equipment: The sample size is still limited by the size of the VFMW oven. POSSIBLE SOLUTION: Collaboration with Lambda Technologies has revealed the possibility of a field applicator that can be placed on a robot arm for field applications.

FUTURE WORK (Current Budget-Period):

- Corrosion Analysis followed by structural testing.
- Continuous optimization and narrowing down of processing parameters
- Statistically significant testing at both room and elevated temperature of all multi-material joints: a) In-plane, b) Out-of-plane, & c) Torsion
- Re-assembly and In-situ Repair (post-fatigue and post-impact).
- Non-Destructive Evaluation: a) Guided Waves, b) IR Thermography, & c) Fiber-optic sensors.
- Dissemination of Results
Summary

RELEVANCE:
- Joining & Assembly: Multi-material Joints that inherit the benefit of both bonded (lightweight) & bolted (re-assembly+repair) joints through ‘active,’ ‘reversible,’ adhesives.

APPROACH:
- Reinforcement of thermoplastic adhesive with novel graphene nano-platelets (GnP) and to use GnP/microwave-interaction for ‘targeted heating of adhesive’ thereby allowing ease of repair and re-assembly
- An Integrated Experimental & Simulations based approach that eliminates the trial-and-error approach is adopted. Robust design tools are also developed.

KEY TECHNICAL ACCOMPLISHMENTS
- Targeted heating of adhesives, dis-bonding and re-assembly and “Healing” was proved Multi-materials, various adhesive and three types of joints successfully developed.
- Numerical simulations at nano-, meso- and macro-scale developed and experimentally validated. A multi-level scheme that can predict the structural behavior by taking into affect the nano-particle distribution developed.

Partners / Collaborations: Eaton Innovation Center, MI.

FUTURE WORK:
- Further optimization of processing parameters
- Corrosion and Elevated Temperature testing
- NDE + Modeling +Development of Design Tools
- Dissemination of Results and Findings
Active, Tailorable Adhesives for Dissimilar Material Bonding, Repair and Assembly

TECHNICAL BACKUP SLIDES
Progress: Functionalization of GnP

- **Functionalization of GnP:**
 - Improve mechanical properties + Toughness + Multi-functionality
 - a) aliphatic epoxy (AE), b) phase separated elastomeric carboxy terminated butadiene nitrile rubber (CTBN), and c) styrene-butadiene-methyl-methacrylate (SBM) triblock polymer have shown the greatest potential.

 CTBN Toughening

 For brevity, only CTBN shown here.

 Functionalization of GnP with all three types of grafting (AE, CTBN, SBM) has been completed.

 Experimental characterization of multiple properties in progress.
Progress: Technical Accomplishments/Results
Environmental / Corrosion Testing

- **Water immersion tests for adhesively bonded Al-Al single lap joint**

 - The strength of the single lap joints with Nylon-6 reduced by ~ 34% at steady state

- **Development of environmental chamber for corrosion test of the Joints**

 - The environmental chamber, which consists of Salt Spray (Fog) apparatus, is under development to perform the corrosion tests according to ASTM B117-11.

 - Further environmental tests will be performed in this chamber.
DESIGN TOOL & 3D Simulations

Use Experimentally Validated Simulations (including flaws)

Predict Behavior of All possible damage locations

Obtain a Design Space, 3D - Performance Surfaces!

Develop Design Charts for easy use (in the field !)

Baseplate / Bonded Area

(a) Edge/Right Disbond

(a) Center Disbond
Progress: Technical Accomplishments/Results

DESIGN TOOL & 3D Simulations

- length of bonded area
- width of bonded area (mm)

Graph showing the distribution of bond lengths and widths with different color-coded values.