

This presentation does not contain any proprietary,

confidential, or otherwise restricted information.

EDT067

 Energy Efficiency & Renewable Energy

High-Efficiency High-Density GaN-Based 6.6kW Bidirectional On-board Charger for PEVs - 2016 Annual Merit Review Meeting

Dr. Charles Zhu, Principal Investigator

DPM, Livonia, MI

June 8, 2016

DE-EE0006834

Contents

- □ Project Overview
- Project Objective
- Project Milestones
- □ Prior Arts and Program Goals
- □ Approaches
- Technical Accomplishments and Progress
 - □GaN device delivery and test
 - □3.3kw GaN-based concept OBC test
 - □6.6kw GaN-based A-Sample design and build
 - □CPES Alternative design, build and preliminary test
- □ Responses to Previous Year Reviewer's Questions
- Partners
- Proposed Future Works
- Summary

Project Overview

Timeline

- Period 1 Start FY14
- Period 1 Finish FY15 (extended for 3 mo., no cost)
- Project Finish FY17
- 38% complete

Budget

- Total project funding DOE share \$1,487,594
- Total Period 1 funding DOE share -\$588,741
- Funding received in Period 1 (FY14 and 15): \$519,849

Barriers

- Parasitic parameters in GaN device and PCB restricts the switching frequency
- Topology and control Scheme for bidirectional power flow
- Thermal design to remove heat
- High frequency magnetics
- GaN device cost

Partners

- Transphorm
- CPES at Virginia Tech
- Fiat Chrysler Automobiles

Project Objective

The objective of this project is to design, develop, and demonstrate a 6.6kw isolated bidirectional On-Board Charger (OBC) using Gallium Nitride (GaN) power switches in a vehicle capable of achieving the specifications identified in Table 1, below. The developed OBC will reduce size and weight when compared to commercially existing Silicon (Si) based OBC products in automobiles by 30%-50%.

Parameter	Requirement	
Switching Frequency	0.3 - 1 Mega-Hertz (MHz)	
Power Efficiency	95%	
Power Rating	3.3 kilo-Watt (kW) at 120 Volts Alternating Current (VAC), 6.6kW at 240 VAC (Auto sensing depending on AC input voltage)	
Plug-In VAC	120/240 VAC	
High Voltage (HV) Battery Voltage Range	250 - 450 Voltage Direct Current (VDC)	
Nominal Battery Voltage	350 VDC	
AC Line Frequency	50 - 60 Hz	
Maximum Coolant Temperature	70°Celcius (C)	
Ambient Temp Range	-40 to 70°C	
Controller Area Network (CAN) Communication	Yes	

FY2015 Objective and Milestones

FY 2015 Objective: Technology Design and Development

- Design, build and test Iteration III GaN device
- Iteration III GaN device switching performance evaluation
- Advanced circuit development for GaN device application
- Build and test the A-Sample charger

#	Milestone	Туре	Due Month
MS 1.1	Si-Based Conceptual Bi-directional Charger Design Complete	Technical	March 2015
MS 1.2	Si-Based Concept Bi-directional Charger Build Complete	Technical	June 1015
MS 1.3	Si-Based Concept Bi-directional Charger Test	Technical	Sept. 2015
MS 1.4	A-Sample Charger Design Completed	Technical	Nov. 2015
DP 1	Analysis of the test result of the concept bidirectional charger	Go/No Go	Nov. 2015
MS 2.1	Build the A-Sample charger	Technical	Feb. 2016
MS 2.2	Test the A-Sample charger and report	Technical	May 2016
MS 2.3	Design the B-Sample charger	Technical	June 2016
MS 2.4	Test the B-Sample charger and report	Technical	Dec 2016
DP 2	Completion of the B-Sample charger prototype build	Go/No Go	Nov 2016

Prior Arts and Program Goals

	Prior Art	Goal
Efficiency	93%	95%
Function	Uni-directional	Bi-directional
Power density	0.45-0.75 kW/L	30% to 50% improvement
Device	Silicon	GaN
Switching frequency	<100kHz	0.3-1MHz

Delta Delta OBCM OBCM (3.3kW) (6.6kW)

TDK OBCM (6.6kW)

Panasonic OBCM (6.6kW)

Delta Solar Inverter (5kW)

Approach – Reduce number of switching devices

Power Device Count			
Device Type	Si-based	GaN-based	
TO-247 Switch	28	24	
TO-247 Diode	24	0	
TO-220 Switch	24	0	
Total Devices	76	24	

Features

- Low Q_{rr}
- · Free-wheeling diode not required
- Quiet Tab[™] for reduced EMI at high dv/dt
- · GSD pin layout improves high speed design
- RoHS compliant
- High frequency operation

Approach – Increase switching frequency

- Approximately 30% of the volume of OBC is taken by magnetic components and capacitors.
- Increasing switching frequency will reduce the size and cost of these components.
- GaN device has lower switching loss, thus allow higher switching frequency.

	GaN HEMT	Si MOSFET	
Transphorm		Infineon	
	TPH3205WS	IPB65R065C7	
R _{ds on} 63mΩ		58 mΩ	
C _{oss tr}	283nC	1110nC	
Q _q 10nC		64nC	
Q _{rr}	138nC	10000nC	

Three Iterations of GaN HEMT devices have been developed and delivered.

	Iteration I	Iteration II	Iteration III
PN	TPH3205WS	TPH3205WSA	TPH3207WS
Quantities delivered	180	550	190
Rds,on	63mΩ	52mΩ	35mΩ
Co_tr	283pF	247pF	430pF
Qg	10nC	19nC	28nC
Qrr	138nC	136nC	175nC

I-3 device has 33% lower Rds,on than I-2 device. Unfortunately, it also has higher charge, which will make switching performance sacrifice. Delta plan to do performance comparison between I-2 and I-3 devices on A-Sample OBC.

Transphorm conducted qualification tests on the Iteration II GaN HEMT device.

trans	sph@rm	Review	
		Specification	
Document #:	700254	Revision:	1
Process Owner:	Ronald Barr	Effective Date:	Nov. 11, 2015
Title: Qualification Report TPH3205WS			

- a) AEC-Q101: Stress Test Qualification for Automotive Grade Discrete Semiconductors
- b) JESD47: Stress-Test Driven Qualification of Integrated Circuits
- c) MIL-PRF-38535: Performance Specification-Integrated Circuits Manufacturing General Specification for Department of Defense
- d) JESD22-A108C: High Temperature Reverse Bias (HTRB)
- e) JESD22-A110D: Highly Accelerated Temperature and Humidity Stress Test (HAST)
- f) JESD22-A104D: Temperature Cycle (TC)
- g) JESD22-A122: Power Cycle (PC)
- h) JESD22-A103C: High Temperature Storage Life (HTSL)
- i) JESD22-A115B: Electrostatic Discharge Machine Model
- j) JS-001-2012: Electrostatic Discharge Human Body Model
- k) MIL-STD-883E, 2007.2 Condition A: Vibration Variable Frequency
- MIL-STD-883E, 2002.3 Condition A: Mechanical Shock

Selected Topology for Concept Design

• 3.3kW bi-directional charger concept prototype PCB

3.3kw GaN-based Concept OBC Test Result

Charger Mode Efficiency

Charger Mode Power Factor

3.3kw GaN-based Concept OBC Test Result

Inverter Mode Efficiency

CH1:lac of S1; CH2: lac of S2; CH3: lac; CH4:Vac

Inverter Load jump 600W→1500W→600W

• A-Sample Design

Parallel of two 3.3kw modules

- The synchronous signal and AC side sensing signal are isolated
- Use droop control to reduce circulating current

• 6.6kw A-Sample OBC

Picture of A-Sample prototype Dimension: 296x250x75mm)

Charger Mode Soft Start

Test condition: Vbus=400v; Vbat=450v; Po=1kw

Ch1:Vbus, Ch2:Vgs_Q1011, Ch3:Ip, CH4: Vbat

The power on set point is 380v and the power off set point is 370v.

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

The max frequency is limited at 800khz.

Inverter Mode Battery Side Current Ripple

Test condition: Vbat=400v/450v; Vac=240v; R load

• The battery side output current ripple is lower than 10%.

Inverter Mode Dynamic Load Response

Test condition: Vbat=450v; Vac=240v; R load

CH1:Vac Ch2:Vgs-D2D, CH3: resonant current, Ch4: Vbus

0w-→1800w

900w-→2700w

• CPES alternative Topology (PFC + Semi-DCX)

CPES alternative Topology (PFC + Semi-DCX)

Soft Switching to Eliminate Turn on Loss

CPES alternative Topology (PFC + Semi-DCX)

CPES alternative Topology (PFC + Semi-DCX)

PFC (>300kHz) DC/DC(~500kHz) 420mm 24W/in³ 6 6 as at in mad 0 24W/in³->32W/in³ Change to electrolytic cap: 32W/in3>38W/in3 0.1% Efficiency Drop

270mm(10.6in)

Developed by CPES

Height:

40mm (1.6in) w/ cold plate

CPES alternative Topology (PFC + Semi-DCX)

Partners/Collaborators

Delta Products Corporation (Primary Recipients)

Administrative responsible to DOE, single point of contact Technical direction and program management Timing and deliverables, budget control OBCM Prototypes development and testing, system integration Commercialization

Transphorm, Inc.

transphorm

High frequency GaN device development GaN device characterization and qualification

CPES at Virginia Tech

GaN device in circuit evaluation High frequency circuit topology selection and evaluation High-frequency magnetic components development

FCA US LLC Vehicle integration and testing Commercialization

Proposed Future Work

- Remainder of FY 2016
 - Compare performance of Iteration III and Iteration II Device in PBC modules
 - Test A-Sample GaN-based OBCs
 - Develop B-Sample GaN-based OBC
 - Develop and finalize market introduction plan at device level and charger level.
 - Confirm host vehicle and integration plan.
- FY2017
 - Develop vehicle test plan.
 - Vehicle integration.
 - Test the OBC in vehicle.

Summary

- DOE Mission Support
 - Test and test one concept bi-directional OBC.
 - Design and build the first generation of GaN-based OBC.
- Approaches
 - Reduce switching devices from 76 Si devices to 24 GaN devices
 - Increase switching frequency to reduce passive components size
 - Develop software switching technology to reduce switching loss
- Technical Accomplishment
 - Developed and evaluated three iterations of GaN devices.
 - Designed, built and tested concept 3.3kw GaN-based OBC to verify architecture and high frequency switching circuit
 - Designed and built A-Sample 6.6kw GaN-based OBC to verify thermal performance and packaging design
 - Developed alternative topology with SiC/GaN devices

Summary

- Future Work
 - Test A-Sample 6.6kw OBC samples
 - Design, build and test B-Sample OBC samples
 - Test prototype of PFC + Semi-DCX topology
 - Test OBC in vehicle
 - Create commercial plan

Smarter. Greener. Together.

To learn more about Delta, please visit www.deltaww.com.

