This presentation does not contain any confidential or proprietary information.
Overview

Timeline
- Start: 12/1/2015
- End: 12/31/2017
- 5% Complete

Budget
- $9.0M Total Budget
 - $4.5M DOE
 - $4.5M CMI
- $0k in Funding for FY2015
- $2.9M for FY2016

Technical Targets / Barriers
- Advanced Combustion Engine
 - Engine thermal efficiency of 55%
 - Lack of fundamental knowledge of advanced engine combustion regimes
 - Lack of effective engine controls

Partners
- Cummins Fuel Systems
- Cummins Turbo Technologies
Relevance

- **Overall Project Objectives**
 - Use a diesel engine system to demonstrate in a test cell peak engine system efficiency of 55%
 - Develop and demonstrate an engine and aftertreatment system to achieve 2010 emissions compliance

- **Goals align with VT Multi-Year Program Plan 2011-2015**
 - Engine thermal efficiency of 55%
 - Prevailing emissions compliance
Milestones – 2016/2017

<table>
<thead>
<tr>
<th>Budget Period</th>
<th>Milestone</th>
<th>Description</th>
<th>Delivery Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M1</td>
<td>Lube Pump Design Complete and Procured</td>
<td>3/31/2016</td>
<td>Complete</td>
</tr>
<tr>
<td>1</td>
<td>M2</td>
<td>Air Handling Controls System Design Selection Complete</td>
<td>6/30/2016</td>
<td>In-Process</td>
</tr>
<tr>
<td>1</td>
<td>M3</td>
<td>Lube Pump Design Integration Complete</td>
<td>9/30/2016</td>
<td>In-Process</td>
</tr>
<tr>
<td>1</td>
<td>M4</td>
<td>WHR Turbine Expander Design Complete</td>
<td>12/31/2016</td>
<td>In-Process</td>
</tr>
<tr>
<td>1</td>
<td>GNG1</td>
<td>50% BTE (Engine Only) Demonstration Complete</td>
<td>12/31/2016</td>
<td>In-Process</td>
</tr>
<tr>
<td>2</td>
<td>M5</td>
<td>Aftertreatment System Design Complete</td>
<td>3/31/2017</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>M6</td>
<td>SET Emissions Demonstration Complete</td>
<td>6/30/2017</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>M7</td>
<td>Hot FTP Emissions Demonstration Complete</td>
<td>9/30/2017</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>M8</td>
<td>55% BTE Final Demonstration Complete</td>
<td>12/31/2017</td>
<td></td>
</tr>
</tbody>
</table>
Technical Approach

<table>
<thead>
<tr>
<th>Q1 2016</th>
<th>Q2 2016</th>
<th>Q3 2016</th>
<th>Q4 2016</th>
<th>Q1 2017</th>
<th>Q2 2017</th>
<th>Q3 2017</th>
<th>Q4 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parasitic Reduction Design/Validation Effort</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dual Loop EGR Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Handling Architecture Analysis and Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mule Engine Combustion Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steady State Calibration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Go/No-Go</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHR System Design & Turbine Expander Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHR Integration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steady State Calibration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transient Calibration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55% Demo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go / No-Go Decision Point
- Test cell demonstration of 50% BTE
 - Engine only performance
 - No WHR

Technical Challenges / Barriers
- Combustion system design to achieve 50% BTE without WHR
- Design integration of parasitic reduction efforts
- Optimization of Dual Loop EGR architecture

Final Demonstration
Final demonstration will include emissions demonstration and 55% BTE peak point

This presentation does not contain any confidential, proprietary, or otherwise restricted information.
Technical Approach

Approach - Integration of Cummins Component Technologies

- Combustion
- Fuel Systems
- Air Handling & EGR
- Aftertreatment (AT)
- Electronic Controls
- Waste Heat Recovery

This presentation does not contain any confidential, proprietary, or otherwise restricted information.
Technical Accomplishments

- Cummins has created an analytical path to 55% BTE
 - Demonstrated Performance To Date
 - Initial fuel system injector designs have been completed
 - Injectors will be robust to cavitation and are expected to meet performance targets
 - Combustion system development is progressing
 - Analysis supports target improvement levels in path to 55% BTE
 - Initial air handling architecture has been evaluated
 - Analysis support gains in path to 55% BTE
 - Might need to run higher engine out NOx levels to hit BTE goal
 - Parasitic reduction are being pursued with rig validation planned
 - WHR system is being optimized for new heat sources
 - New turbine expander being designed for best BTE point
Technical Accomplishments: Path

Path to 55% BTE for Conventional Diesel Combustion

50% BTE Engine
Exhaust/EGR WHR
Optimized Combustion System
Optimized Injector
Parasitics Reduction
Optimized WHR Turbine

Demonstrated SuperTruck

This presentation does not contain any confidential, proprietary, or otherwise restricted information.
Technical Accomplishments: Path

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>SuperTruck 51% BTE (Baseline)</th>
<th>55% BTE Proposal (Additional or Replace)</th>
<th>Expected Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustion System</td>
<td>Steel Piston, Piston Cooling</td>
<td>Higher CR Piston, Insulated Surfaces No/Low Piston Cooling, Higher Coolant Temperature</td>
<td>+1.3% BTE Point</td>
</tr>
<tr>
<td>Fuel System</td>
<td>Traditional Common Rail Injector</td>
<td>High Flow Injectors (3 times faster injection)</td>
<td>+1.3% BTE Point</td>
</tr>
<tr>
<td>Air Handling</td>
<td>High Pressure Cooled EGR, Variable Geometry Turbocharger</td>
<td>Dual Loop EGR & Larger Turbocharger, Consider Twin Entry WG</td>
<td>+0.6% BTE Point</td>
</tr>
<tr>
<td>WHR</td>
<td>EGR, Exhaust, Coolant, Lube</td>
<td>HP EGR, LP EGR, Exhaust, Coolant, Lube, Charge Air Cooler</td>
<td>+0.2% BTE Point</td>
</tr>
<tr>
<td>Aftertreatment</td>
<td>DOC+DPF+SCR Conventional</td>
<td>DOC+SCRF Close-Coupled + SCR</td>
<td>NOx Conversion Efficiency</td>
</tr>
<tr>
<td>Mechanical System</td>
<td>Low Tension Oil Ring, Variable Flow Lube Pump, Plasma Coated Liners, Reduced Piston Cooling</td>
<td>Low Tension Piston Rings, DLC Coated Rings, New Plasma Coated Liners, No/Low Piston Cooling, Variable Flow Pumps, Reduce Valvetrain Parasitic</td>
<td>+0.6% BTE Point</td>
</tr>
</tbody>
</table>
Technical Accomplishments: Injectors

- Diffusion combustion is mixing controlled/limited
- Shorten combustion duration by increasing fuel injection rate
- Challenge for injector design is avoiding cavitation
- Cummins Fuel Systems
 - Analysis led design process
 - Enables robust, cavitation-free operation
- Next generation injectors are designed, procured and ready for testing

This presentation does not contain any confidential, proprietary, or otherwise restricted information.
Technical Accomplishments: Pistons

Kicked Off and In-process

- Structural Analysis
- Conjugate Heat Transfer Analysis
- Thermal Survey
- Performance Evaluation

- Temperature Sensitivity
- Material Selection
- Temperature Prediction
- HT & Perf. Prediction
- Temperature Validation
- Model Verification
- Brake Thermal Eff and Closed Cycle Eff

Projected Timing Q3
Projected Timing Q4

Technical Accomplishments:
Pistons
Technical Accomplishments: Pistons

Piston Crown Temperatures

- Working with multiple suppliers on piston designs
- Conjugate Heat Transfer analysis is guiding the work
 - Performing CHT with suppliers in the analysis process
- Challenge is to turn heat transfer reductions into efficiency
 - This has been limiting factor in previous work
Technical Accomplishments: EGR

- **HP & LP Cooled EGR**
 - Dual Loop
- **Advanced turbo technologies**
 - Larger turbocharger
 - Abradable coatings
 - Turbine diffuser
 - Roller bearings
 - Extrusion honed turbine casing
- **Optimized exhaust manifold design**
 - Pulsation utilization
- **Cam timing optimization**
Technical Accomplishments: EGR

- Initial EGR Loop architecture analysis is underway
- Baseline is the 51% BTE SuperTruck Engine
 - HP EGR Loop
- Dual Loop EGR solution paired with larger turbocharger showing potential for 0.2dBTE-unit improvement
- Exhaust manifold optimization showing potential for additional 0.2 dBTE-unit improvement
- Higher Engine Out NOx & turbocharger improvements can provide additional BTE improvements
Technical Accomplishments: Parasitic

<table>
<thead>
<tr>
<th>Coolant and Lube System</th>
<th>Valve Train</th>
<th>Power Cylinder</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Variable Coolant Pump</td>
<td>• Reduced Component Inertias</td>
<td>• Lower Friction Ring Coatings</td>
</tr>
<tr>
<td>• Variable Lube Oil Pump</td>
<td>• Reduced Stiffness Springs</td>
<td>• Lower Ring Tension</td>
</tr>
<tr>
<td>• Improved Lube System Flow Losses</td>
<td>• Reduced Oil Flow</td>
<td>• Improved Piston Skirt Coatings</td>
</tr>
<tr>
<td>• Reduced Oil Flow of Valve Train</td>
<td></td>
<td>• Improved Piston Profiles</td>
</tr>
</tbody>
</table>

Analysis Model
- Valve Train Models
- Power Cylinder Models
- Flow/Power Calculations

Rig Validation of System
- Cylinder Head Rig
- Engine Friction Assessment
- Pump Flow Testing & System Validation

Transfer of Systems onto Performance Demonstration
- Validated Parasitic Signature

This presentation does not contain any confidential, proprietary, or otherwise restricted information.
Two main challenges for aftertreatment system on high BTE engines

1. Low exhaust temperatures
2. Higher engine out NOx
 • Due to hotter combustion temperatures

Performance Requirements

- Comply to 2010 HD EPA
- Enable LP EGR by close coupling
- Minimize heat loss to ambient to maximize WHR efficiency
- Maximize open cycle efficiency by lowered back pressure penalty
Technical Accomplishments: WHR

- **Waste Heat Sources**
 - Engine Coolant/Lube
 - EGR (LPL & HPL)
 - Exhaust
 - Charge Air Cooler

- **Turbine Expander**
 - New turbine expander design
 - Optimized for best BTE point

- **WHR Temperature Control**
 - Avoid condensation in LPL EGR
Response to Reviewer Comments

- This project was not reviewed last year.
Collaborations

- Cummins Fuel Systems
 - Provide Advanced XPI Fuel System (Direct Injection)
 - Higher flow rate injectors
 - Analysis led design process
 - Robust, cavitation-free injectors

- Cummins Turbo Technologies
 - Provide Advanced Turbocharger Technologies
 - Larger turbocharger
 - Advanced coatings
 - Turbine diffuser
Remaining Challenges & Barriers

- High flow rate injectors can potentially have worse shot-to-shot performance
 - Need additional testing and analysis to ensure injector dynamics will not become unstable

- Higher engine out NOx will likely be required to achieve BTE goal
 - How much NOx can be tolerated by AT system?

- Previous work with insulated combustion systems have been challenged to demonstrate improved efficiency
Proposed Future Work

- Continue engine system developments
 - Reduce in-cylinder heat losses
 - Shorten combustion duration

- Continue air handling optimization
 - Dual loop EGR optimization
 - Turbocharger efficiency improvements

- Continue WHR system optimization
 - Develop new turbine expander
 - System optimization at best BTE point
 - Consider new waste heat sources
Summary

- Cummins has created an analytical path to 55% BTE
 - Demonstrated Performance To Date
 - Initial fuel system injector designs have been completed
 - Injectors will be robust to cavitation and are expected to meet performance targets
 - Combustion system development is progressing
 - Analysis supports target improvement levels in path to 55% BTE
 - Initial air handling architecture has been evaluated
 - Analysis support gains in path to 55% BTE
 - Might need to run higher engine out NOx levels to hit BTE goal
 - Parasitic reduction are being pursued with rig validation planned
 - WHR system is being optimized for new heat sources
 - New turbine expander being designed for best BTE point
Technical Back-Up Slides
Technical Progress
Optimized Injector – Single Cylinder Engine Results

- Single cylinder engine results show up to 2pt closed cycle efficiency gain
- Multi-cylinder results show ~1.3pt closed cycle gains
 - Air handling enhancements needed
Koeberlein AMR 2015

- 3rd injector design completed
 - Robust cavitation design
 - Heat release improvements shown
 - Injector shot-shot work remains

Δ BTE impact: +1.3pt

Impact of injection rate shape at constant intake conditions
Technical Progress – Piston Thermal Solution Validation Results

Base Piston: Max Temperature = 254° C
Piston A: Max Temperature = 345° C
Piston B: Max Temperature = 574° C

Net Cycle Δ BTE impact: + 1.7%
Includes open and closed cycle gains

Koeberlein AMR 2015
This presentation does not contain any confidential, proprietary, or otherwise restricted information.
Technical Progress –
Improved WHR Turbine Expander & Parasitic Reduction Results

- Improved turbine efficiency
- System heat exchanger architecture arrangement
 - Pre-heat of low pressure loop

Total BTE contribution: 3.6%
△ BTE impact: + 0.7% BTE

Friction and Parasitic reduction validated on multi-cylinder engine
- Piston/ring pack/liner changes
- Piston cooling flow reduction
- Fuel pump parasitic reduction
- Lube pump improvements

△ BTE impact: + 0.9% BTE

Koeberlein AMR 2015
This presentation does not contain any confidential, proprietary, or otherwise restricted information.