Enabling Materials and Processes for Clean Energy and Electric Power

August 26, 2015
OE / DOE Workshop on Materials for Grid
Oak Ridge, TN

Mark Johnson
Director
Advanced Manufacturing Office
www.manufacturing.energy.gov
Clean Energy and Manufacturing: Nexus of Opportunities

Security
- Energy self-reliance
- Stable, diverse energy supply

Economy
- Competitiveness in clean energy
- Domestic jobs

Environment
- Clean air
- Climate change
- Health

Clean Energy Solutions

Clean Energy Manufacturing
Making Products which Reduce Impact on Environment

Advanced Manufacturing
Making Products with Technology as Competitive Difference
Clean Energy Manufacturing Initiative – Across DOE

EERE

Renewable Power
- Solar
- Geothermal
- Wind & Water

Energy Efficiency
- Buildings
- FEMP
- Weatherization
- Advanced Manufacturing

Transportation
- Vehicles
- Bioenergy
- Fuel Cells

Clean Energy Manufacturing Initiative

Fossil Energy
- O&G
- CCS

Nuclear Energy

Electricity, ARPA-E, Science, EM, NNSA, EPSA
Advanced Manufacturing – Strategic Inputs

Climate Action Plan
(EOP / CEQ / OSTP 2014)

Advanced Manufacturing Partnership (AMP2.0)
(NEC / PCAST / OSTP 2014)

Quadrennial Energy Review
(DOE / EPSA 2015)

Quadrennial Technology Review
(DOE / Science and Technology 2015)

1) Broadly Applicable Efficiency Technologies for Energy Intensive and Energy Dependent Manufacturing

2) Platform Materials & Processes Technologies for Manufacturing Clean Energy Technologies
Advanced Manufacturing Topical Priorities

Efficiency Technologies for Manufacturing Processes (Energy, CO₂)
1. Advanced Sensors, Controls, Modeling and Platforms (HPC, Smart Manf.)
2. Advanced Process Intensification
3. Grid Integration of Manufacturing (CHP and DR)
4. Sustainable Manufacturing (Water-Energy, New Fuels & Feedstocks)

Platform Materials & Technologies for Clean Energy Applications
5. Advanced Materials Manufacturing (incl: Extreme Mat’l., Conversion Mat’l, etc.)
6. Critical Materials
7. Advanced Composites & Lightweight Materials
8. 3D Printing / Additive Manufacturing
9. 2D Manufacturing / Roll-to-Roll Processes
10. Wide Bandgap Power Electronics
11. Next Generation Electric Machines (NGEM)

QTR Manufacturing Focus Areas Mapped to Advanced Manufacturing

Topical Areas for Technology Development
Energy Consumption by Sector

Estimated U.S. Energy Use in 2013: ~97.4 Quads

- Solar 0.320
- Nuclear 8.27
- Hydro 2.56
- Wind 1.60
- Geothermal 0.201
- Natural Gas 26.6
- Coal 18.0
- Biomass 4.46
- Petroleum 35.1

Electricity Generation 38.2
- Net Electricity Imports 12.4
- Electricity Imports 0.179

Transportation 27.0
- Residential 11.4
- Commercial 8.59
- Industrial 24.7
- Energy Services 38.4

Energy Efficiency & Renewable Energy

U.S. DEPARTMENT OF ENERGY
Energy Intensive Industries

Primary Metals
 1608 TBTU

Petroleum Refining
 6137 TBTU

Chemicals
 4995 TBTU

Wood Pulp & Paper
 2109 TBTU

Glass & Cement
 716 TBTU

Food Processing
 1162 TBTU
Processes for Clean Energy Materials & Technologies
Energy Dependence: Energy Cost Considered in Competitive Manufacturing

- Solar PV Cell
- Carbon Fibers
- Light Emitting Diodes
- Electro-Chromic Coatings
- Membranes
- EV Batteries
- Multi-Material Joining
Water and Energy in Sustainable Manufacturing

Water for Energy

Energy for Water

Water Energy Uses

Energy reported in Quads/year. Water reported in Billion Gallons/day.
Possible Impact Areas of Cross-Cutting Technology for Energy Intensive Industry Sectors

<table>
<thead>
<tr>
<th></th>
<th>Chemicals & Bio-chemicals</th>
<th>Petroleum Refining</th>
<th>Primary Metals</th>
<th>Forest & Food Products</th>
<th>Clean Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMART Manufacturing</td>
<td></td>
</tr>
<tr>
<td>Process Intensification</td>
<td></td>
</tr>
<tr>
<td>CHP & Grid Integration</td>
<td></td>
</tr>
<tr>
<td>Sustainable Manufacturing</td>
<td></td>
</tr>
</tbody>
</table>
Bridging the Gap to Manufacturing

AMO: Advanced Manufacturing Office

Concept → Proof of Concept → Lab scale development → Demonstration and scale-up → Product Commercialization
AMO Elements

Three partnership-based approaches to engage industry, academia, national labs, and state & local government:

1. **Technical Assistance** – driving a corporate culture of continuous improvement and wide scale adoption of proven technologies, such as CHP, to reduce energy use in the industrial sector

2. Research and Development Projects

3. Shared R&D Facilities
Industrial Technical Assistance

Efficient On-Site Energy
Clean Energy Application Centers
(to be called Technical Assistance Partnerships since in FY14)

![Map of Efficient On-Site Energy](image)

Energy-Saving Partnership
Better Buildings, Better Plants,
Industrial Strategic Energy Management

Student Training & Energy Assessments
University-based Industrial Assessment Centers

![Map of Student Training & Energy Assessments](image)
AMO Elements

Three partnership-based approaches to engage industry, academia, national labs, and state & local government:

1. Technical Assistance

2. **Research and Development Projects** - to support innovative manufacturing processes and next-generation materials

3. Shared R&D Facilities
R&D Projects: Manufacturing Processes

Ultrafast, femtosecond pulse lasers (right) will eliminate machining defects in fuel injectors.
Image courtesy of Raydiance.

Energy-efficient large thin-walled magnesium die casting, for 60% lighter car doors.
Graphic image provided by General Motors.

Protective coating materials for high-performance membranes, for pulp and paper industry.
Image courtesy of Teledyne.

A water-stable protected lithium electrode.
Courtesy of PolyPlus
R&D Projects: Combined Heat and Power (CHP)

Advanced MicroTurbine System (AMTS) R&D Program

Advanced Reciprocating Engine Systems (ARES) R&D Program

C200 MicroTurbine Engine

QSK60G engine

Capstone photos source: capstoneturbines.com
AMO Elements

Three partnership-based approaches to engage industry, academia, national labs, and state & local government:

1. Technical Assistance
2. Research and Development Projects
3. **Shared R&D Facilities** - affordable access to physical and virtual tools, and expertise, to foster innovation and adoption of promising technologies
Shared R&D Facilities

Address market disaggregation to rebuild the industrial commons

Then

Ford River Rouge Complex, 1920s

Photo: Library of Congress, Prints & Photographs Division, Detroit Publishing Company Collection, det 4a25915.

Now

OEM

Tier 1

Tier 2

Tier 3

Tier 1

Tier 2

Tier 3

Tier 2

Tier 3

Tier 3

How do we get innovation into manufacturing today?
Manufacturing Technology Maturation

TRL 3/4: Enabling Technology Tested in Laboratory
MRL 3/4: Enabling Components Made in Laboratory

TRL 4/5: System Technology Tested in Laboratory
MRL 4/5: Investigate Pilot Environment to Make Components

TRL 5/6: Hardware-in-Loop System Testing in Laboratory
MRL 5/6: Investigate Pilot Environment to Make Systems

TRL 6/7: System Testing in Production Relevant Environment
MRL 6/7: System Components made in Pilot Environment

End-Use Adoption

TRL 1-3: Foundational
MRL 1-3: Science

Industry Partnerships

Technology Needs and Requirements

Energy Efficiency & Renewable Energy
Critical Materials Institute

A DOE Energy Innovation Hub

- Consortium of 7 companies, 6 universities, and 4 national laboratories
- Led by Ames National Laboratory

<table>
<thead>
<tr>
<th></th>
<th>Dy</th>
<th>Eu</th>
<th>Nd</th>
<th>Tb</th>
<th>Y</th>
<th>Li</th>
<th>Te</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lighting</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicles</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar PV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Program goal is to accelerate the manufacturing capability of a multitude of AM technologies utilizing various materials from metals to polymers to composites.
PowerAmerica: Next Generation Power Electronics Manufacturing Institute

Institute Mission: Develop advanced manufacturing processes that will enable large-scale production of wide bandgap semiconductors

- Higher temps, voltages, frequency, and power loads (compared to Silicon)
- Smaller, lighter, faster, and more reliable power electronic components
- $3.3 B market opportunity by 2020.¹
- Opportunity to maintain U.S. technological lead in WBG

Poised to revolutionize the energy efficiency of electric power control and conversion

¹ Lux Research, 2012.
Objective
Develop and demonstrate innovative technologies that will, within 10 years, make advanced fiber-reinforced polymer composites at...

- 50% Lower Cost
- Using 75% Less Energy

And reuse or recycle >95% of the material
SMART Manufacturing: Advanced Controls, Sensors, Models & Platforms for Energy Applications

Focus on Real-Time
For Energy Management

- Encompass machine-to-plant-to-enterprise real time sensing, instrumentation, monitoring, control, and optimization of energy
- Enable hardware, protocols and models for advanced industrial automation: requires a holistic view of data, information and models in manufacturing
- Leverage High Performance Computing for High Fidelity Process Models
- Significantly reduce energy consumption and GHG emissions & improve operating efficiency – 20% to 30% potential
- Increase productivity and competitiveness across all manufacturing sectors: Special Focus on Energy Intensive & Energy Dependent Manufacturing Processes

Leverages AMP 2.0
What does Success Look Like?

Energy Products Invented Here...

...And Competitively Made Here!
Thank You

Questions?