

Ultra High Voltage SiC Power Devices and All DC Electric Power Grid

Dr. Alex Q. Huang, aghuang@ncsu.edu Progress Energy Distinguished Professor FREEDM Systems Center, NC State University

NC STATE UNIVERSITY

Big Picture: Moving from Centralized Grid to Distributed (& Renewable) Energy Resources

Challenges of large scale use of renewables for electrical grids:

- \equiv On the one hand many small decentralized units connected to distribution and low voltage grid (micro- and mini-CHP, Wind, PV, solar, "prosumers")
- \equiv On the other hand many large-scale wind farms, PV farms and solar power stations, that have to transmit the energy over long distances
- \equiv Power generation of wind and solar (PV) is volatile, which requires medium and løng-term energy storage

1) 100% penetration: Voltage Issue?

2) Market transformation: Energy Internet (proposed in 2007 by Dr. Huang)

Frequencies

Losses

Energy Internet Market/Business

[1] Huang, A.Q.; Crow, M.L.; Heydt, G.T.; Zheng, J.P.; Dale, S.J.; , "The Future Renewable Electric Energy Delivery and Management (FREEDM) System: The Energy Internet," *Proceedings of the IEEE* , vol.99, no.1, pp.133-148, Jan. 2011

[2] W. Su, and A.Q. Huang, "A Game Theoretic Framework for a Next-generation Retail Electricity Market with High Penetration of Distributed Residential Electricity Suppliers" *Applied Energy,* vol.119, pp.341-350, April 2014.

[3] W. Su, "The Role of Customers in the U.S. Electricity Market: Past, Present, and Future", *The Electricity Journal,* 2014. (invited)

^Ȑusing Internet technology to transform the power grid of every continent into an **energy internet** that acts just like the Internet (when millions of buildings are generating a small amount of renewable energy locally, on-site, they can sell surplus green electricity back to the grid and share it with their continental neighbors); and"

FREEDM System: Resilient Grid

Example 2007 * Proposed by Dr. Huang in 2007 $=$ 5

Medium Voltage SiC Technology

Solid State Transformer

SST Functional Diagram

SST

From 60Hz to SST to Smart Transformer to Energy Router

SST: MV AC voltage sag operation: 25% voltage sag, 5KW

Input voltage, et referred pages above and current and voltage of current

Smart Grid 2.0: The Energy Internet **SST Integration with a Non-linear Load: Harmonic Mitigation**

Smart Grid 2.0: The Energy Internet **Frequency Response: SSSM Demo**

Short-Circuit Protection

All DC Electric Grid

MAJOR ADVANATGE Over AC: 1) Loss reduction, 2) Better utilization of cables, and 3)Easy for DER integration

15kV p-GTO, n-IGBT and n-MOSFET

GTO thyristor demonstrate the best current carry capability and small T dependence

External How about 50 kV thyristor?

FREED²⁴ Current capability at 50 kV

p-GTO IV with τ **_HL=10** μ **s**, good anode injection

Better lifetime enhancement will lower forward drop at 50 kV to < 5V

17

15 kV SiC p-ETO in Action: Hybrid Solid State Circuit Breaker

FMS: 1.5 ms opening speed

15 kV withstand voltage separation achieved at around 1.5 ms

Conclusions

- **All DC Electric Grid has numerous advantages and should be considered as a long term modernization goal**
	- 1) Lower losses & better cable utilization, 2) easer for DER integration
- **High Voltage and High Frequency Capability Switch**
	- Ultra High Voltage SiC MOSFET can enable HVDC-MVDC-LVDC Power Grid Architecture
- **High Voltage and High Temperature Switch**
	- Ultra High Voltage SiC bipolar devices such as GTO and thyristor are very attractive for very high voltage and high temperature operation such as a in a DC circuit breaker