FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR
May 18-19, 2016
Cincinnati, OH

Energy Master Planning Perspectives and Best Practices

Hosted by:

FEMP
Federal Energy Management Program

Duke Energy
Energy Master Plan Perspectives

• Why is an Energy Master Plan important?
 – Identify and coalesce around goals and drivers
 – Address critical infrastructure needs
 – Prepare for growth
 – Develop an actionable strategy

• The Goal:
 – Provide a roadmap for an efficient, practical, cost effective and robust energy infrastructure system
Energy Master Plan Approach

• Where do I start?
 – Define your control boundary

• What should I address?
 – Energy Consumption/Demand
 – Energy Production/Conversion
 – Energy Distribution
Common Planning Components

- Condition Assessment
- Infrastructure Renewal
- Load Growth Projections
- Energy Conservation Improvements
- Self-Generation/Fuel Diversity
- Distribution Analysis
- Environmental Compliance Strategies
- New Plant/Infrastructure Siting
- Reliability Improvements
- Cost Estimating
- Economic Evaluation
- Funding/Phasing/Scheduling Plans
Planning Methodology – The Start

- Follow Architectural Master Plan
 - “Living” Document

- Determine Goals and Expectations
 - Level of Detail
 - Time Window
 - Biases/Political issues

Ensure Energy Systems Meet Mission Needs and Addresses Deferred Maintenance

Improve Energy Reliability & Redundancy

Reduce GHG Emissions & Operating Costs
Planning Methodology – Digging In

• Data Gathering
 – Interviews
 – Documents
 – Walkdowns

• Data Review
 – Temperatures, flows, BTUs, KWH, Etc.
 – Gaps and Assumptions
 – Service Life
 – Understand interdependencies
Planning Methodology – Analysis

• Develop assumptions
 – How to handle unknowns?
 – Load growth projections
 – Redundancy requirements

• Primary Analysis
 – Modeling/Evaluation Baseline
 – Options Analysis
 – Develop Alternatives
 – Project Siting
Planning Methodology – Evaluations

• Cost Estimates

• Economic Analysis
 – Economic factors
 – LCC with IRR
 – Integrate with GHG emissions
 – Sensitivity Analysis
Planning Methodology – The Plan

- Finalize Recommendations
- Funding Plan
 - Discrete Project List
 - Cost Loaded Schedule
- Communication Tool
 - Consider Audience
 - Consider Living Report
Case Study
The University of Texas at Austin
UT Austin - By the Numbers

• 50,000 students
• 18 million SF, 485 acres
• $580M+ Annual Research
• Largest University Utility in US
 – Boiler Plant Commissioned - 1910
 – Power Plant Commissioned - 1928
• Generation Capacity - 134 MW
 – 59 MW Peak Load
• Electrical Duct Banks - 32 Miles
• Steam/CHW Tunnels - 9 Miles
• Campus-Wide Blackouts
 – 4 in 54 years
Energy Supply to Campus

Diagram showing the energy supply system:
- Underground duct banks
- Electric power
- 950°F exhaust gas
- Two gas turbines, 79 MW
- Two heat-recovery steam generators
- Four steam turbines, 62 MW
- Natural gas
- Inlet-air cooling
- Standby power
- Air
- Four boilers
- Natural gas
- HP steam
- Healing steam and hot water
- Tunnels
- Four chilling stations
- Eight electric chillers, 30,000 tons
- Three electric chillers, 15,000 tons
- Chilled-water storage
Challenge – New Master Plans

Federal Utility Partnership Working Group
May 18-19, 2016 Cincinnati, OH
Natural Gas Projection

Fuel Gas Forecast (MMBTU)

FY2010 forecast, escalated at 2%

4,118,000

4,500,752

4,960,135

5,486,393

5,657,421

Federal Utility Partnership Working Group
May 18-19, 2016 Cincinnati, OH
Challenge – New Medical School

- 2M+ SF new teaching and research hospital facilities
Campus Energy Initiatives

• Energy Procurement
• Demand Side Management
 – Retro-commissioning
 – Smart metering
 – Seed money and self-funding
• Plant Efficiency Upgrades
 – Chase every Btu – Optimize!
 – $150M investment
 – Address interdependencies
• Water Conservation
 – Buildings
 – Plants
 – Landscaping
Natural Gas Projection

Fuel Gas Forecast (MMBTU)

FY2010 forecast, escalated at 2%

Actual volumes
FY2016 forecast, escalated at 2%

Federal Utility Partnership Working Group
May 18-19, 2016 Cincinnati, OH
Goal - offset growth with Side Demand Conservation

Federal Utility Partnership Working Group
May 18-19, 2016 Cincinnati, OH
Net Benefit

CUMULATIVE AVOIDED GAS
SINCE 1996

15,670,000 MMBTU

Without Improvements

Space Growth

Return to 1976 Fuel Levels
9 million sf vs. 17.9 million sf
184 million kWh vs 337 million kWh
Questions?

Contact
Kevin Fox, P.E., CEM
Principal - Energy & Power Solutions, Jacobs
kevin.fox@jacobs.com