Hydrogen Fuel Cells for Small Unmanned Air Vehicles

Presenter:
Karen Swider-Lyons : US Naval Research Laboratory

DOE Host:
Pete Devlin : Market Transformation Manager, FCTO

U.S. Department of Energy
Fuel Cell Technologies Office
May 26th, 2016
• Please type your question into the question box
Hydrogen Fuel Cells for Small Unmanned Air Vehicles

Karen Swider-Lyons
US Naval Research Laboratory
Code 6113, Alternative Energy Section, Chemistry Division

DOE webinar

26 May 2016
The Navy’s corporate research lab
Founded in 1923 by T. Edison
• Radar
• GPS (satellites)
• Microair vehicles
• Permanent magnets
• Enabling technologies
Motivation for High Power Fuel Cell Propulsion

Fuel cell advantages:
• Higher energy than batteries
• Higher efficiency than engines
 Small engines ~10% efficient
 Fuel cells ~45% efficient

Benefits for UAVs:
• Long endurance electric UAVs
• Quiet flights at 400 ft AGL with inexpensive payload
 – Lowers cost and OPTEMPO of missions
• **Big UAV missions with a small UAV**
 • “Nano-ization” of UAVs
 • Lower cost and maintenance
 • Less storage volume

Advantages of electric propulsion
• Near silent operation
• Instant starting
• Increased reliability
• Ease of power control
• Reduced thermal signature
• Reduced vibration

NRL’s Dragon Eye UAV
Hydrogen Fuel

Compressed hydrogen gas only viable option for automotive industry
High energy fuel
 – Up to 10,000 psi in development

ADVANTAGES
– Responds immediately to change in load – *can be throttled*
– No waste produced (only H$_2$O)

DISADVANTAGES
– Difficult logistics for remote land locations
– Large storage volume (but OK for UAVs)
New airvehicle propulsion system - hydrogen fuel cell

NRL Chemistry and Tactical Electronic Warfare Divisions

Spider-Lion: Nov 2005: 15 g H₂ (2 w%) 3 Hr 19 minutes

Flight weight:
1.71 kg
(3.77 pounds)
Ion Tiger – UAV for 24 h flight with 5 lb payload

Swider-Lyons, et al., AIAA, 2011-6975
Hydrogen Fuel Cells
All Hands Television video 2009
(4 minutes and 11 s)
• Power source and fuel are typically 35 to 65 % of vehicle weight
• For small UAVs, 38 to 40 wt% is a good target

Ion Tiger Design Sizing

• TOGW 35.5 lbs
 – Fuel Cell 2.2 lb
 – Fuel Tank 8.0 lb
 • Fuel 1.1 lb
 – Regulator 0.4 lb
 – Cooling System 1.5 lb
 – Propulsion System 0.9 lb
 – Avionics 1.0 lb
 – Airframe* 15.5 lb
 – Payload 5.0 lb

* With NRL supplied internal mounts, wiring, etc

Dimensions
• Wing Area 16.9 ft²
• Span 17.0 ft
• Aspect Ratio 17
• Length 7.9 ft
• L/D 17

• Cruise Power 267w
 – Propulsion 200 w
 – Avionics 20 w
 – Flight Controls 20 w
 – Payload 20 w
 – Conversion Losses 7 w

Key design point – WEIGHT!!!
Attempts to identify a COTS airframe capable of carrying the fuel tank were unsuccessful, necessitating a custom airframe design.
The sizing of the system is determined largely by the interrelated properties of the stack, compressor and heat exchanger.
Progression of Flight-Weight Fuel Cell Systems

Fuel cell at beginning of program (Fall 2007):
1 kg and 300 W net

Ion Tiger Program Product:
• 1 kg and 550 W net

New components/features
• new humidifier design
• new air blower
• higher power stack
• integrated control electronics
• 99% H₂ utilization
Ion Tiger Radiator Cooling System
120 °F/49 °C ambient operation

At start of program, fuel cell could not operate above 60 °C
Requires 7x larger radiator vs fuel cell that operates at 80 °C

Improvement for Ion Tiger: Incorporate new fuel cell membranes with higher temperature capability – operation at higher temperatures even better!

\[\frac{dQ}{dt} = hA[T(t)_{\text{HEX}} - T_{\text{ambient}}] \]

\[A = \frac{dQ/dt}{h \Delta T(t)_{\text{HEX-ambient}}} \]
Ion Tiger Radiator Cooling System

New radiator enables Ion Tiger operation in 120°F environment

✓ Developed analytical tools for future designs/improvements

Enabled by technical solutions:
• Lightweight radiator with improved heat transfer
• Higher fuel cell temperature with robust humidifier design and stack membranes

Solutions came from:
• Thermal modeling of fuel cell and radiator
• Wind tunnel testing of radiator designs
• Improved radiator fabrication expertise
NRL \(\text{H}_2 \) Storage Trade Study

- \(\text{H}_2 \) storage trade study for UAVs in Ion Tiger Program
- **Major Conclusions**
 - 5000 psi \(\text{GH}_2 \) could support 1 day flight; lowest technical risk
 - LH\(_2\) could support up to 3 day flight; much higher technical risk
 - Assumed existing Ion Tiger airframe; larger aircraft → longer flight endurance
Carbon Overwrapped Aluminum H₂ Tanks

New technologies demonstrated:
* Metal spinning for custom tanks sizes
* Demonstrated new resins with 10% more strength

500 g hydrogen storage in 22-L tank weighing 3.6 kg (8 lbs)
including 0.15 kg regulator = 13% H₂ storage

Lower safety factor allowed for aerospace
Ion Tiger Hydrogen fuel cell UAV

26 h 1 min flight
16-17 November 2009 with
5 lb payload
5000 psi H₂ (500 g)

48 h flight April 2013 with
liquid hydrogen

“unofficial” world records for fuel cell powered flight”
Energy of Fuel Cells vs. Batteries for Ion Tiger system

16 kg GTOW - 38 wt% fuel cell propulsion plant

- **7 kg** fuel cell propulsion system (with fuel and cooling)
 - Specific energy of 1100 Wh/kg for compressed H\textsubscript{2}
 - 26 hours of flight at 300 W

- Compare to high energy Lithium battery
 - Specific energy of 200 Wh/kg
 - 4.8 hours of flight at 300 W from 6 kg of battery
 - OR 30 kg needed to fly for 24 hours at 300 W
Power profile for 23 hr flight

- Cold front from 10 PM to midnight
- Vehicle flew at full power for >20% of flight
- Hybridization with battery inadequate

Climb out

Higher Winds
“Hybridization” not appealing for naval platforms

• The 11- and 23- hour flights had periods when fuel cell used at full power for long periods of time
 • Maximum power of fuel cell is maximum power of system
 • May have to fly into head wind for sustained periods of time
• May be an opportunity for load leveling if we can get small high power batteries
Role of efficient electrocatalysts

Gaseous v liquid hydrogen

- Liquid hydrogen is 3x denser than gaseous H2 at 5000 psi
- No need for “heavy” high pressure storage tank
 - GH2 = 50 psi
- Path to 3 day flights of Ion Tiger and 3000 Wh/kg system
48-h flight 16-18 April 2013

And another unofficial world record!
LH2 Design: nested aluminum tanks

- Vacuum between 2 aluminum spheres
- Minimize heat conduction between the 2 spheres with multilayer insulation (MLI)
- Design with appropriate boil off volume, etc.
- Similar designs looked at for automotive and high altitude long endurance UAVs

Managing heat leak vs ambient temperature

Options: decrease LH₂ boil off through increased insulation (volume & weight)
Fly at very cold temperatures.

\[Q = \sigma (T_1^4 - T_2^4) \]

\(T_1 = 20 \text{ K} \)
\(T_2 = \text{ambient} \)

Stefan- Boltzmann
Radiative heat transfer
Ways to “enhance” your flight test

• Choose a nice day for flight test
 – Cool in morning, sun in afternoon with little wind
 • Catch thermals
 • Reduce requirement for radiator
 – For LH2 – choose cold day
 • Decreases H2 boil off and reduces size of radiator

• Don’t carry a payload
 – Reallocate 5 to 7% of vehicle payload weight to fuel or fuel cell
In house development of fuel cells

3-D Printing in Hydrogen Fuel Cells for Unmanned Systems

March 2014 ~ 400 W NRL-made stack flown on Ion Tiger
Titanium Bipolar plates by 3D Laser Sintering

Unconstrained gaskets

Assembly guides and gasket orientation

Freudenberg 0.8 mm

Textured gaskets and BPP w/ gasket constraints

1st short stack to pass leak tests

Leak test fixture

32-cell “full” stack

- Learned to how to seal a stack and how to assemble
- Full stack was showing high cell-to-cell variability and 80% power
Issues with 3D printed plates

- Insufficient flatness for sealing
- Heavy

New: NRL’s 1.5 to 3 KW fuel cells

Leverage “automotive” technology for stamped bipolar plates
Other vendors of fuel cells for UAVs

- EnergyOR
- Horizon
- UTC
- AMI/Ultra electronics - SOFC
Research toward high performance fuel cell UAVs

<table>
<thead>
<tr>
<th>Improved fuel cells</th>
<th>Aerodynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>More efficient/effective catalysts</td>
<td>Low drag vehicles</td>
</tr>
<tr>
<td>Improved hydrogen/oxygen diffusion</td>
<td></td>
</tr>
<tr>
<td>Higher performance polymer electrolyte membranes</td>
<td></td>
</tr>
</tbody>
</table>

Hydrogen storage

- Higher strength carbons (overwrap)
- New material for hydrogen storage

Hydrogen production

- Biological/electrochemical/solar
- From oil/gas

High efficiency motors

- Permanent magnets

Lightweight materials

- Light airframe

Aerodynamics

- Low drag vehicles

Thermal management

- High efficiency radiators

System level modeling

- Simulink, etc.

Improved batteries

- For backup/load leveling

Lighter payloads/avionics

- Improved electronics
- Camera optics
- Communication systems

Autonomy

- Artificial intelligence
Are fuel cells for UAVs economically viable?

Cost of Li-ion battery in Raven: $1000
How much can a fuel cell system cost (including H₂ tank)?
 $5000? $10,000?
 $2000 profit per fuel cell
 100 UAVs = $200,000 profit?

Need to sell large volumes of systems, and develop a cost model where long endurance provides economic benefit over battery.
Global Hawk
~700 gallons or 2272 kg or
or 2.5 tons of jet fuel per day

Ion Tiger
500 g of hydrogen per day

For a 20% efficient H₂ generator
2.5 kg of hydrocarbon fuel per day
~900x more efficient

How many small UAVs can be used to replace one large UAV?
Missions: military (intelligence surveillance)/ commercial: communications, etc
Some parting thoughts

• The fuel cells are here
• UAVs are here.
• We need lower cost fuel cells and low-cost, practical H_2 fueling to make these ubiquitous
Some References

Thank you!

Michele Anderson and Richard Carlin, ONR Code 33

NRL’s Ion Tiger team:
Benjamin Gould, Richard Stroman, Drew Rodgers, Joe Mackrell,
Mike Schuette, Greg Page, Alvin Cross, Steve Carruthers, Dan Edwards

Doug Wheeler
LH2 fueling system on loan from General Motors

Special thanks to: Keith Bethune, University of Hawaii
Question and Answer

• Please type your question into the question box

[Image of a call interface with questions field]

Dial: +1 (805) 309-0021
Access Code: 558-060-339
Audio PIN: 24

If you’re already on the call, press #24# now.

[Enter a question for staff]

Webinar Now
Webinar ID: 664-973-082

GoToWebinar
Thank You

Presenter(s):
• Karen Swider-Lyons : US Naval Research Laboratory

DOE Host:
• Pete Devlin : Market Transformation Manager, DOE Fuel Cell Technologies Office
 – Peter.Devlin@ee.doe.gov

Webinar Recording and Slides: (http://energy.gov/eere/fuelcells/webinars)