

Harvesting & Extraction, Agricultural Co-products and Fuel Conversion Technical Accomplishments, Progress and Results

Presented by Kimberly Ogden, NAABB Engineering Director

Harvesting & Extraction Task Framework

Harvesting

- Chemical flocculation processes
- Electrolytic processes (field test scale-up)
- Membrane processes (field test scale-up)
- Acoustic focusing process (field test scale-up)

1º Harvesting

2º Harvesting

Extraction/Lipid Recovery

Pond Harvest 10x

Dewatering 10-20X

Cell Disruption/Lipid Extraction Total Lipids
TAGs
FAA/FAME
LEA

Lipid & LEA Feedstocks for Conversion & Co-products

Extraction

- > Amphiphilic solvent process
- > Acoustic process
- > Cavitation/Separation
- > Mesoporous extraction FFA
- ➤ Wet Solvent Extraction (Valicor -Toll Processing)

Harvesting

- Current bottlenecks to cost effective production of biofuels from algae – traditional is centrifuge
- Need to concentrate from 1 g/L to 40 or 100 g/L prior to extraction

Electrocoagulation

Filtration

Acoustic Focusing

Harvesting Technology Comparison

Table 1 Baseline Feasibility Assessment of Harvesting-Extraction Technologies						
		Chemical	Electricity			
	Energy Input	Cost	Cost	OPEX	OPEX	
Technology	(kWh/kg)	(USD/Kg)	(USD/kg)	(USD/Kg)	(USD/Gal)	PEL
	BASELINE HA	RVESTING	TECHNOLOGIE	S		
Centrifuge Baseline	3.300	0.000	0.264	0.264	1.799	56.978
Dissolved Air Floatation	0.250	0.008	0.020	0.028	0.191	4.317
Spiral Plate Separation	1.418	0.000	0.113	0.113	0.773	24.475
	NAABB H	arvesting T	echnologies			
Chitosan Flocculation	0.005	0.055	0.000	0.055	0.377	0.093
AICI3 Flocculation	0.120	0.046	0.010	0.056	0.380	2.072
Electrolytic Harvesting	0.039	0.004	0.003	0.007	0.049	0.673
Membrane Filtration	0.046	0.000	0.004	0.004	0.025	0.789
Ultrasonic Harvesting	0.078	0.000	0.006	0.006	0.043	1.347
	BASELINE EX	TRACTION T	TECHNOLOGIE	:S		
Pulsed Electric Field	11.520	0.000	0.922	0.922	6.280	198.906
Wet Hexane Extraction	0.110	0.001	0.009	0.010	0.068	1.904
NAABB Extraction Technologies						
Solvent Phase Algal Migration	1.648	0.947	0.132	1.079	7.352	28.446
Ultrasonic Extraction	0.384	0.000	0.031	0.031	0.209	6.630
Nanoparticle Mesoporous	0.008	54.355	0.001	54.356	370.363	0.137
Supercritical	1.174	0.000	0.094	0.094	0.640	20.271

Technologies for M1: Demonstrate 100L/hr

Table 1 Baseline Feasibility Assessment of Harvesting-Extraction Technologies						
	Energy Input	Chemical Cost	Electricity Cost	OPEX	OPEX	
Technology	(kWh/kg)	(USD/Kg)	(USD/kg)	(USD/Kg)	(USD/Gal)	PEL
		RVESTING	TECHNOLOGIE	S		
Centrifuge Baseline	3.300	0.000	0.264	0.264	1.799	56.978
Dissolved Air Floatation	0.250	0.008	0.020	0.028	0.191	4.317
Spiral Plate Separation	1.418	0.000	0.113	0.113	0.773	24.475
	NAABB H	arvesting T	echnologies			
Chitosan Flocculation	0.005	0.055	0.000	0.055	0.377	0.093
AICI3 Flocculation	0.120	0.046	0.010	0.056	0.380	2.072
Electrolytic Harvesting	0.039	0.004	0.003	0.007	0.049	0.673
Membrane Filtration	0.046	0.000	0.004	0.004	0.025	0.789
Ultrasonic Harvesting	0.078	0.000	0.006	0.006	0.043	1.347
	BASELINE EX	TRACTION T	TECHNOLOGIE	:S		
Pulsed Electric Field	11.520	0.000	0.922	0.922	6.280	198.906
Wet Hexane Extraction	0.110	0.001	0.009	0.010	0.068	1.904
NAABB Extraction Technologies						
Solvent Phase Algal Migration	1.648	0.947	0.132	1.079	7.352	28.446
Ultrasonic Extraction	0.384	0.000	0.031	0.031	0.209	6.630
Nanoparticle Mesoporous	0.008	54.355	0.001	54.356	370.363	0.137
Supercritical	1.174	0.000	0.094	0.094	0.640	20.271

Electrolytic Separation

- Reactive metallic electrodes to produce positively charged ions that induce coagulation of the negatively charged microalgae
- Pilot Test July 2012, Pecos Texas
- •Final Solids 8%
- •Energy 0.04 kW/m³
- •Loading 270 m³/kg hr

Comparison to base case of Centrifugation

Basis - Biomass Productivity of 316,831 Tons/Year

	Centrifuge ¹	Electrocoagulation ²
<u>Capital Costs</u>		
Number of Units	2,231	620
Capital Cost	\$613,525,000	\$403,350,000
Annual Operating Costs		
Electricity Cost (from model)	\$354,000	\$329,000
Labor Cost (from model)	\$90,000,000	\$13,000,000
Maintenance	\$25,000,000	\$2,800,000
TOTAL OPERATING	\$115,400,000	\$16,100,000

Filtration

- Developed thin porous Ni alloy metal sheet membranes
- Field tests using mobile unit performed at Pecos, TX

Filtration was conducted at relatively low liquid flow velocity with liquid/bubble slug flow

Ultrasonic Harvesting

- Sound waves aggregate algae
- Advantages:
 - No moving parts; No chemical additives
 - Harvested cells are still viable
 - Rapid effect—within 1 minute
 - 100X concentration effect in a single pass
 - Low energy input: 0.01-0.04 kWhr/m³
 - Low cost: 1-4 cents per gal lipid
- Pilot Test September 2012:
 - N. oculata from Solix Biosystems
- Scaled-up Harvester:
 - 45-225L/hr using 9 modules
 - Scaled harvester module delivered energy to the liquid layer 100-fold more effectively than laboratory-scale unit

Concentration lines of N. salina in a laboratory scale harvester.

Scaled up harvester

Large scale concentration

Process Schematic (Gen 1)

Mass Balance for Nannochloropsis Extraction @

Nannochloropsis 1						
Date of extraction: 7/23/2	012			Extraction		
	Algae slurry				Oil	
		,			2,015	g
Paste	140.0	lb	Pretreatment		32.4%	
AFDW content	9.8	%				
Dry wt	6,223	g				
				+		
In	6.2	kg		LEA - Wet	142.5	lb
Out	6.4	kg		Dry solids content	6.9%	%
Mass balance closure	103.5	%		LEA - Dry	4.4	kg

Oil yield,	wt%	AFD	W
------------	-----	-----	---

Std deviation	1.8
Average	32.6
Nannochloropsis 3	30.9
Nannochloropsis 2	34.5
Nannochloropsis 1	32.4

Harvesting/Extraction Milestones and Deliverables

Los Alamos NATIONAL LABORATORY

- EST. 1943 -

DONALD DANFORTH PLANT SCIENCE CENTER

DISCOVER . ENLIGHTEN . SHARE . NOURISH

U.S. DEPARTMENT OF

Milestones (M) Desision Deinte (CN) and Deliverables (DL)			
Milestones (M), Decision Points (GN) and Deliverables (DL)	Status		
C.DL.1: New harvesting/extraction technologies demonstrated at bench scale and scale-	15		
up defined. (design specs, drawings performance reports)			
C.DL.2: Economic analysis establishing most efficient technologies at liter scale	18		
complete. (report)			
C.GN.1: (Go/No Go) Most viable technology(s) selected for large-scale field tests based	18		
on performance and scale-up viability criteria (report)	Complete		
C MI 4. Contains complete of 400 40001 /by for data also proceedings down as for the day	36		
C.ML.1: Systems capable of 100-1000L/hr feedstock processing demonstrated. (report)	Complate		

Slide 12

Pacific Northwest

NATIONAL LABORATORY

Proudly Operated by Battete Since 1965

Harvesting & Extraction Synopsis

Impact

- Harvesting and Extraction can make up to 50% of crude oil cost
- Started with 9 technologies; after 18 months down selected to Harvesting technologies and 1 extraction technology
- Conducted field tests with target of 100 L/h processing with new low energy technologies (Electrocoagulation, Membrane Filtration, Acoustic Focusing)

Agricultural Co-products Task Framework

Fertilizer Evaluations

- Small greenhouse studies
- Limited field trials

Feedstocks

Fertilizer Testing & Evaluations

Various LEA

Fertilizer Applications

Feed Applications

Ruminant Shrimp Fish

Feed & **Fertilizer** Value

Feed Testing & Evaluations

Animal Feed Development & Testing

- In vitro and in vivo nutritional value experiments
- Mariculture feed studies
- Cattle / Sheep feed studies

Feeding Results

Type of Animal Tested	Performance	Digestibility	Value
Ruminants Lambs, Cattle* *Biomass provided by DARPA (GA)	Palatable Growth, histology and blood metabolites similar to soybean -lambs	Supplementation of LEA does not impair fiber digestion Similar to cottonseed and soybean meal	Value of LEA in relation to soybean meal is ~ \$160 US
Nonruminants Pigs	Reduction in growth Blood not affected		
Aquaculture Red drum, Shrimp	LEA is a suitable replacement for traditional protein feeds for fish and shrimp production		Excellent but minerals of concern

Chemical/Nutritional Characterization of LEA

	Soybean Meal	Chlorella Pecos (open ponds)	Chlorella Pecos (open ponds)	Nannochloropsis Solix (photobioreactor)
Extraction Method	Solvent	Valicor – high temperature	Valicor– low temperature	Solix Solvent - hexane
Nutrient Composition, % DM				
Ash	6.3	43.4	39.2	4.7
Crude Protein	42.3	20.3	22.0	34.3
Neutral Detergent Fiber	14.9	22.1	24.3	36.7
Acid Detergent Fiber		10.5	13.2	23.0
Lipid (Folch method)	2.3	5.2	5.4	11.1
Calcium, %	0.4	6.4	5.6	0.3
Phosphorus, %	0.7	0.4	0.4	1.1
Sodium, %	0.04	5.5	5.7	1.4
Chloride, %	0	3.4	5.0	1.1
Aluminum, ppm		3590.0	4170.0	48.4
Iron, ppm	185.0	5110.0	5600.0	435.0

Ag Co-products Milestones and Deliverables

Milestones (M), Decision Points (GN) and Deliverables (DL)	
E.2.DL.1: Preliminary cost analysis, bench scale rate data, and yield information obtained	24
for production chemicals	Complete
E.1.DL.1: Best performing feed formulations determined(report)	

Agricultural Co-products Synopsis

Impact

- LEA varied in quality in terms of ash, protein and residual lipids based on strain, cultivation site and processing methods
- Generally LEA work well as feed supplement by inclusion studies for all animals tested (cattle, sheep) and (shrimp, fish) but not swine
- LEA also worked as a fertilizer/soil amendment although values for this application were extremely low (\$30/ton)
- Values for the LEA as a feed supplement for animals (\$160/ton) and mariculture (\$200/ton) generally do not provide a high enough value to offset algal oil production costs

Fuel Conversion Task Framework

Lipid Conversion to Fuels

- Processes to produce Biodiesel fuels (FAMEs)
 - Solid Acid Catalyzed
 - Sub-Supercritical
- Processes to produce hydrocarbon fuels
 - Hydrogenation
 - Decarboxylation

Detailed Characterization

- Chemical & physical characterization of feedstock (lipid/LEA)
- Chemical & physical characterization of fuel products
- Quality/Performance evaluations of fuel products

Feedstocks

Lipid Conversions Processes

Various Lipid Extracts	Biodiesel
	Hydrocarbon Fuels
Algal Biomass Whole Biomass Various LEA Macroalgae	Methane/Power
	Ethanol
	Organic Acids/Gasoline
	Bioplastics
	Refinery Feedstock

Product / Process Characterization & Evaluations

Biomass Conversions Processes

Biomass/LEA Conversion to Fuels & Chemicals

- > Hydrothermal gasification to methane for power
- Hydrothermal Liquefaction and upgrading to hydrocarbon fuels
- > Biological conversion: organic acids to gasoline, ethanol
- Production of chemicals

Fuel Conversion Task Framework

Lipid Conversion to Fuels

- Processes to produce Biodiesel fuels (FAMEs)
 - · Solid Acid Catalyzed
 - Sub-Supercritical
- Processes to produce hydrocarbon fuels
 - Hydrogenation
 - Decarboxylation

Detailed Characterization

- Chemical & physical characterization of feedstock (lipid/LEA)
- Chemical & physical characterization of fuel products
- Quality/Performance evaluations of fuel products

Feedstocks

Lipid Conversions Processes

Various Lipid Extracts	Biodiesel
	Hydrocarbon Fuels
Algal Biomass Whole Biomass Various LEA Macroalgae	Methane/Power
	Ethanol
	Organic Acids/Gasoline
	Bioplastics
	Refinery Feedstock

Product / Process Characterization & Evaluations

Biomass Conversions Processes

Biomass/LEA Conversion to Fuels & Chemicals

- > Hydrothermal gasification to methane for power
- Hydrothermal Liquefaction and upgrading to hydrocarbon fuels
- > Biological conversion: organic acids to gasoline, ethanol
- Production of chemicals

Conversion Lipid Extracts to Fuels

"Contaminants" for Conversion are "Nutrients" for Cultivation

Chemical/Physical Characterization of Lipids

- FT-ICR Mass Spectrometry Analysis
- 1000 to 1500 peaks per ionization mode (positive ion or negative ion)

 Detect phospho-lipids, acyl attached fatty acids, monoacyl fatty acids

Fuel Conversion Task Framework

Product / Process Characterization

& Evaluations

Lipid Conversion to Fuels

- Processes to produce Biodiesel fuels (FAMEs)
 - Solid Acid Catalyzed
 - Sub-Supercritical
- Processes to produce hydrocarbon fuels
 - Hydrogenation
 - Decarboxylation

Detailed Characterization

- Chemical & physical characterization of feedstock (lipid/LEA)
- Chemical & physical characterization of fuel products
- Quality/Performance evaluations of fuel products

Feedstocks

Lipid Conversions Processes

Various Lipid Extracts	Biodiesel		
	Hydrocarbon Fuels		
Algal Diamaga	Methane/Power		
Algal Biomass • Whole Biomass • Various LEA • Macroalgae	Ethanol		
	Organic Acids/Gasoline		
	Bioplastics		
	Refinery Feedstock		

Biomass/LEA Conversion to Fuels & Chemicals

- > Hydrothermal gasification to methane for power
- Hydrothermal Liquefaction and upgrading to hydrocarbon fuels
- > Biological conversion: organic acids to gasoline, ethanol
- Production of chemicals

Conversion of Lipid Extract to Biodiesel

Conversion of Lipid Extract to Hydrocarbon Fuels

UOP's Renewable Jet Fuel & UOP/ENI Ecofining Processes

*SPK = Synthetic Paraffinic Kerosene

Feedstock Versatile Process for Green Diesel & Green Jet

Conversion of Lipid Extract to Hydrocarbon Fuels

*SPK = Synthetic Paraffinic Kerosene

Feedstock Versatile Process for Green Diesel & Green Jet

Chemical/Physical Characterization of Jet Fuel @ TIPF

Parameter	D7566 HEFA Specification	Jet Fuel from Algal FAME	Jet Fuel from Algal TAG Oil #1	Jet Fuel from Algal TAG Oil #2	Jet Fuel from Algal TAG Oil #3	Jet Fuel From Algal TAG Oil #4	Jet Fuel from Algal FAME Oil
Density (g/L)	730 - 770	755.2	753.1	754.2	756.9	749.4	767.6
Freeze point (°C) max	-47	-48.6	-62.6	-50.4	-61.8	-80	-70.6
Flash Point (°C) min	38	42.5	39.7	44	45	40.2	85.4
Distillation							
10% Recovered Temp (T10) °C max	205	156.4	160.2	151.4	150.4	152	208.2
50% Recovered Temp (T50) °C	Report	192	193.8	191.4	189	180	231.6
90% Recovered Temp (T90) °C	Report	248.8	245.6	252.4	234.8	222.2	257
Final Boiling Point (°C) max	300	279	271.8	293.2	284.2	263.6	289
T50-T10 min	15	35.6	33.6	40	38.6	28	23.4
T90-T10 min	40	92.4	85.4	101	84.4	70.2	48.8

Chemical/Physical Characterization of Algal Diesel @

Parameter	F-76 Naval Distillate	ULSD Specifications	Algal Diesel From TAG Oil #1	Algal Diesel from TAG Oil #2	Algal Diesel From TAG Oil # 3	Algal Diesel From FAME Oil
Density at 15° C, g/L (max)	876	-	778.2	770	783.2	777.4
Flash Point, ° C (min)	60	52	91.2	62.7	120.9	85.2
Cetane Number (min)	42	40	92	85	106	ND
Sulfur (max %)	0.15	0.0015	0.0003	0.0001	<0.0001	0.0001
Distillation 90%Recovered, ° C (max) (min)	357	338 282	288.4	305	320	294.8
Distillation End Point, ° C, (max)	385		317.8	324.8	345.8	330.4
Cloud Point, ° C (max)	-1	By geography	-20.5	-16.2	4.4	-6.9
Pour Point, ° C (max)	-6	By geography	-24	-21	3	-12
Metals (ppm) max						
Calcium	1	-	<0.009	0.024	0.17	<1
Lead	0.5	-	<0.01	< 0.02	<0.04	<0.02
Sodium + Potassium	1	-	0.29	0.026	0.25	<1
Vanadium	0.5	-	<0.009	< 0.009	<0.01	<0.01

Fuel Conversion Task Framework

Lipid Conversion to Fuels

- Processes to produce Biodiesel fuels (FAMEs)
 - Solid Acid Catalyzed
 - Sub-Supercritical
- Processes to produce hydrocarbon fuels
 - Hydrogenation
 - Decarboxylation

Detailed Characterization

- Chemical & physical characterization of feedstock (lipid/LEA)
- Chemical & physical characterization of fuel products
- Quality/Performance evaluations of fuel products

Feedstocks

Lipid Conversions Processes

Various Lipid Extracts	Biodiesel			
	Hydrocarbon Fuels			
Algal Biomass Whole Biomass Various LEA Macroalgae	Methane/Power			
	Ethanol			
	Organic Acids/Gasoline			
	Bioplastics			
	Refinery Feedstock			

Product / Process Characterization & Evaluations

Biomass Conversions Processes

Biomass/LEA Conversion to Fuels & Chemicals

- Hydrothermal gasification to methane for power
- Hydrothermal Liquefaction and upgrading to hydrocarbon fuels
- > Biological conversion: organic acids to gasoline, ethanol
- Production of chemicals

Hydrothermal Conversion of LEA and Whole Algae 🍊

- algae de-watered from 0.6 g/l to 100 g/L
- 2. hydrothermal liquefaction
- 3. solid precipitate separation for clean bio-oil production and phosphate capture
- 4. oil/water phase separate
- 5. oil hydrotreater to produce hydrocarbons—diesel/gasoline)
- 6. aqueous phase carbon is catalytically converted to fuel gas and nutrients recycled (N, K, CO₂)

Hydrothermal Conversion of Whole Algae

1

100 g algae 23% ACF* Dry basis

Hydrothermal Liquefaction

 348° C 2900 psiLHSV = 2.2 hr⁻¹ (~15 min residence time)

64 g bio-oil 18% ACF* Dry basis

Hydrotreater

 $105-401^{\circ}$ C 2000 psig LHSV = 0.20 hr⁻¹ 85 L/hr H₂ 0.026 g H₂ consumed/ g feed

47 g
High value
refinery
feedstock oil
Dry basis

Stream		Ultimate Analysis				Dynamic Viscosity,	Density, g/mL	Water,	Acid Number,
Description	С	Н	N	0	s	mPa-s (40°C)	(40°C)	wt%	mg KOH/g
PNNL HTL Bio-oil									
HT Feed	77.6	10.6	4.0	7.2	0.3	512	0.96	11.0	56
HT Product	84.2	14.0	0.08	1.7	<0.005	4.9	0.78	0.27	0.1

Catalytic Gasification

 Low-temperature, single-step synthetic natural gas from algae and LEA

- Wet Biomass
- Metal catalyst
- High-pressure steam reforming & methanation

$$C_xH_yO_z + nH_2O \rightarrow aCH_4 + bCO_2$$

Equilibrium Control of Gasification

Combined HTL & CHG Conversion of Whole Algae @

TEM	DATA
Lipid content of whole algae	33%
Bio-oil from HTL as % algae mass	58%
Bio-oil from HTL as % algae AFDW	64%
% of algae carbon in HTL oil	69%
Mass of organic residual in effluent water	34%
% of organic in effluent converted to CH ₄	50%
Total carbon recovery as fuel (oil + CH ₄)	86%

Combined HTL & CHG Conversion of Whole Algae

Chemical/Physical Characterization of Jet Fuel from HTL Conversion

			Jet Fuel From HTL Algal	Jet Fuel From HTL Algal
Parameter	Jet A	Jet A1	Bio-Oil #1	Bio-Oil #2
Density (g/L)	775 - 840	775 - 840	786.3	780.2
Freeze point (°C)	-40	-47	-45.8	-57
max	-40	-47	-43.6	-57
Flash Point (°C)	38	38	61.2	59.6
min	36	30	01.2	39.0
Distillation				
10% Recovered	205	205	167.8	167
Temp (T10) °C max		203	107.8	107
50% Recovered	Report	Panart	207.4	203.6
Temp (T50) °C	περοπ	Report	207.4	203.0
90% Recovered	Donart	Ronart	244.6	242.2
Temp (T90) °C	Report	Report	244.0	242.2
Final Boiling Point	300	300	273.2	272
(°C) max	300	300	2/3.2	2/2

Summary of NAABB Lipid and Biomass Conversion Processes

Fuel Conversion Milestones and Deliverables

Milestones (M), Decision Points (DP) and Deliverables (DL)						
D.DL.3: Preliminary cost a (report)	analysis, bench scale ra	ate data, and yield infor	mation obtained	24 Complete		
D.ML.1: Select optimal co	•	•		24 Complete		
D.DL.1: Pollutant and greenhouse gas emissions from the combustion of algae-derived						
D.DL.2: ASPEN process n	. ,	hnologies demonstrate	d. (report)	30 Complete		
Summary Report: Conversion Task D 2012	Summary Report: Conversion Task D Milestone 1	Summary Report: Conversion 2012	Summary Report: Conversion 2013			

Fuel Conversion Synopsis

Impact

- Processed algal biomass, lipid extracts and LEA from >5 species using multiple technologies to finished fuel products (one-of a kind data set of data)
- Crude lipid extracts to finished fuels (Biodiesel and HC Fuels) 1) low carbon yield to fuels due to clean-up losses; 2) Fuel products could meet fuel specs (issues with impurities)
- Demonstrated conversion of LEA (CH₄, ethanol, organic acids)
- Liquefaction combines extraction with conversion and has the potential to significantly improve yields (2X) over the wet extraction baseline

Downstream Process Outcomes

- All Deliverables and Milestones Accomplished
- New Harvesting and Extraction Technologies Tested in Field
- Cost Analyses (CAPEX and OPEX) for all downstream processes
- Process Models (ASPEN) for all Conversion Processes as well as Growth Model
- Technology transfer activities in progress
 - Electrolytic Harvesting
 - Acoustic Focusing
 - Membrane Filtration
 - HTL/CHG
- Integrated Systems Critical Success Factors

Cultivation/Harvesting/Water & Nutrient Recycling

Extraction/Lipid Clean-up and Conversion

WBS F

Direction Conversion to Fuels & Co-products

Questions?

Back up Slides

Conversion of Whole Algal Biomass to Fuel via Direct Pyrolysis

Conversion of LEA to Fuels via Biological and Chemical Processes

Conceptual process flow diagram

