### 2013 DOE Bioenergy Technologies Office (BETO) Project Peer Review

### Hydrothermal Decomposition & Resource Recycling

#### Date: May 21<sup>st</sup>, 2013 Technology Area Review: BETO

Principal Investigator: City of Allentown & Delta Thermo Energy Organization: City of Allentown

This presentation does not contain any proprietary, confidential, or otherwise restricted information

### **Goal Statement**

- Research & design an innovative solution using "Hydrothermal Decomposition" technology to transform municipal solid waste, biomass, biosolids waste into a renewable clean fuel to produce clean energy.
- This will help encourage the creation of a new domestic bioenergy industry supporting:
  - Reduction of U.S. Dependence on Oil (less diesel used by trucks),
  - Diversification of energy resources,
  - Development and deployment of commercially viable, highperformance biofuels, bioproducts, & biopower.

# **Quad Chart Overview**

#### Timeline

- Project start date: Dec.1.10
- Project end date: March.31.13
- Percent complete: 100%

### Barriers

- Barriers addressed
  - Proven to meet USA air emissions
  - Test chemical and elemental composition of the pulverized fuel
  - Engineering design to meet operating target & produce 3-4 MW of energy.

### **Budget**

- Funding for FY 2012: \$685K/\$600K
- Funding for FY 2013: \$315K/\$480
- FY 2014 projected budget: \$ 0
- Years the project has been funded/average annual funding:
  - 2 Years/\$500,000

#### Partners

- City of Allentown
- Delta Thermo Energy, Inc.
- Atlantic County Utility Authority

# **Project Overview**

 Delta Thermo Energy seeking partners for sustainable energy solutions:

- Using selected 3 key technologies operating abroad.

- Research & design the development of an innovative cost effective solution for the USA market.
- Design and build pilot test system.
- Installed pilot test system: December 2011.
- Permits issued & tests started: January 2012.
- Process engineering design complete: 3.31.13

## 1 - Approach



# 1 - Approach



- MSW/Biosolids processed using Hydrothermal Decomposition technology (RRS); producing renewable clean fuel.
- Use proven solutions already commercially operating in other countries.
- Technology due diligence with operating experts key to achieving success.

### 2 - Technical Accomplishments/ Progress/Results

- Designed, built and installed scale pilot test system.
  - Designed and built abroad
  - Asssembled and tested
  - Built and installed in New Jersey
- Conducted 26 feedstock tests:
  - Two EPA certified labs used
  - Two international labs
  - Average caloric content of the fuel: 9,050 Btu/lb
- Process-patent filed in the USA

### 3 - Relevance

GOALS

To develop commercially viable biomass utilization technologies to:

 Enable sustainable, nationwide production of advanced biofuels that can displace a share of petroleumderived fuels to reduce U.S. dependence on oil.

 Encourage the creation of a new domestic bioenergy industry supporting the Energy Independence & Security Act of 2007.

#### ALLENTOWN PROJECT

- Saving Allentown millions: ~\$40 M
- Eliminating 3 hauling trucks/day
- Produces advanced clean pulverized fuel: 9,050 Btu/lb average
- Generates 4 MW of electricity without fossil fuels.
- Feasibly implementable in 10,000 cities.
- Can substitute coal in a number of existing coal burning boilers.
- Saves over 200,000 miles in diesel truck driving per year.

## 4 - Critical Success Factors

- Testing transformation of feedstock from Allentown.
- Successfully addressing key challenges:
  - Air emissions
  - Clean waste water
  - Manufacture key technologies in the USA.
- Design innovative plant tailored to meet USA requirements
- Analyze initial design an economics applicable to multiple locations and capacities:
  - Feedstock compositions
  - Project proforma analysis
  - Proof of financing availability.

## 5. Future Work

- Continue to full plant design, construction and implementation.
- Implement 160 ton/day project at the City of Allentown plant.

|                      | Time in month                                       | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8       | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |  |
|----------------------|-----------------------------------------------------|---|---|---|---|---|---|---|---------|---|----|----|----|----|----|----|----|--|
| Jasper / Hokuto, ETC | Basis engineering                                   |   |   |   |   |   |   |   |         |   |    |    |    |    |    |    | 2  |  |
| DTE                  | Order key parts, like Turbine, RRS, WWTS, Boiler    |   |   |   |   |   |   |   |         |   |    |    |    |    |    |    |    |  |
| to Penntex           | Data exchange to Penntex, hall size                 |   |   |   |   |   |   |   |         |   |    |    |    |    |    |    |    |  |
| Jasper               | Detailed engineering                                |   |   |   |   |   |   |   |         |   |    |    |    |    |    |    |    |  |
| DTE                  | Order specified parts with shorter delivery time    |   |   |   |   |   |   |   |         |   |    |    |    |    |    |    |    |  |
| Jasper               | Detailed engineering Control System, Plant Software |   |   |   |   |   |   |   |         |   |    |    |    |    |    |    |    |  |
| Jasper               | Supervising Indoor Installation work                |   |   |   |   |   |   |   | 1.1.1.1 |   |    |    |    |    |    |    |    |  |
| Jasper / Hokuto, ETC | Premounting                                         |   |   |   |   |   |   |   |         |   |    |    |    |    |    |    |    |  |
| Hokuto               | Delivery time RRS, Installation                     |   |   |   |   |   |   |   |         |   |    |    |    |    |    |    |    |  |
| Jasper               | Delivery time CCC, Installation                     |   |   |   |   |   |   |   |         |   |    |    |    |    |    |    |    |  |
| ETC                  | Delivery time WWTS equipment, Installation          |   |   |   |   |   |   |   |         |   |    |    |    |    |    |    |    |  |
| Boiler               | Delivery time Boiler, Installation                  |   |   |   |   |   |   |   |         |   |    |    |    |    |    |    |    |  |
| Turbine              | Delivery time Turbine, Installation                 |   |   |   |   |   |   |   |         |   |    |    |    |    |    |    |    |  |
| Equipment            | Delivery time other equipment, Installation         |   |   |   |   |   |   |   |         |   |    |    |    |    |    |    |    |  |
| All .                | Start up System, test run                           |   |   |   |   |   |   |   |         |   |    |    |    |    |    |    |    |  |
| Jasper / Hokuto, ETC | Operating Attendance                                |   |   |   |   |   |   |   |         |   |    |    |    |    |    |    |    |  |
|                      |                                                     |   |   |   |   |   |   |   |         |   |    |    |    |    |    |    |    |  |
|                      |                                                     |   |   |   |   |   |   |   |         |   |    |    |    |    |    |    |    |  |

• Implement at other locations.

# Summary

A unique solution transforming waste into a renewable clean fuel:

- 1) Hydrothermal Decomposition as a means to transform waste resources to produce an environmentally clean fuel.
  - Create 25 new green jobs per plant.
- 2) Patent pending plant process.
- 3) A proven solution implementable nationwide.
- 4) Already commercially working outside the USA.
- 5) Implement the first plant in Allentown by next year.
- 6) Manufacture the key technologies in the USA.