Options to Decarbonize our Energy System

Arun Majumdar Stanford University

Global Exponentials

How can we decarbonize our energy system and continue economic growth?

Carbon-Free Electricity

Why Hydrogen?

About \$100B industry 45 million tons worldwide production

- Displace fossil fuels direct use in vehicles using fuels cells
- Reducing CO₂ into chemicals and fuels
- Electricity storage and generation
- NH₃
- Refinery hydrogenation

CO₂ + H₂ -> CO + H₂O Reverse Water Gas Shift Reaction

H₂ production: Steam Reforming of Natural Gas

How do we produce carbon-neutral H₂ at <\$2/kg at scale?

Thermodynamics & Cost Limits

 $H_20 = H_2 + \frac{1}{2} O_2$; $\Delta H = 286 \text{ KJ/mol} = 40 \text{ kWh/kg-H}_2$

Biomass

- Calorific Value: 7000 BTU/lb = 15400 BTU/kg = 4.50 kWh/kg-bm
- Cost = \$65/ton = \$0.065/kg-bm
- Energy Cost = \$15/MWh

A grand challenge in decarbonization...

Can we combine pathways?

Path-Independent Techno-Economics

Energy Cost (Energy Efficiency)

Thermodynamic Limit

 $= 40 \text{ kWh/kg-H}_2$

Realistic ≈ 50 kWh/kg-H₂ (within 80% of limit)

Energy cost = $50 \text{ kWh/kg x } $0.02/\text{kWh} = $1/\text{kg-H}_2$

Levelized Non-Energy Cost

- Capital cost for plant
- O&M
- Cost of capital
- Depreciation

\$0.50/kg-H₂ at scale

Electrochemical Pathway

 $\Delta H = 55 \text{ kWh/kg-H}_2$

TODAY:

\$5/kg-H₂ **OPTIMISTIC LIMIT:**

\$2/kg-H₂

Can one achieve economies of scale in non-energy cost

How can one achieve \$1.50/kg-H₂ limit at scale with new system design?

Thermochemical Pathway – Materials & Systems

STATE-OF-THE-ART
Medium = $600 \, ^{\circ}\text{C}$ Hot = $1,500 \, ^{\circ}\text{C}$ CeO_2 < $1\% \, \eta_{\text{Carnot}}$

Material

Reactor

$$\Delta T = \frac{-2\Delta G_{f,T_{GS}}^{H_2O} - T_{GS}\Delta S}{S_{T_{TR}}^{O_2} + 2\Delta S_{reduction}}$$

Medium = $600 \, ^{\circ}$ C Hot = $800 \, ^{\circ}$ C

Fluidized bed reactor?

- Matching heat input to chemistry
- Heat recuperation

Non-Energy System Cost = \$0.50/kg-H₂ at scale doable?

How can we achieve 50 kWh/kg-H₂ in energy efficiency?

Zero-Net Carbon Fuels – Science to Systems

(In)Famous Predictions from the Past

- "Radio has no future"
- "X-rays will prove to be a hoax."
- "Heavier-than-air flying machines are impossible"

Lord Kelvin in 1890s

(In)Famous Predictions from the Past

"Man will not fly for 50 years."

Wilbur Wright in 1901

Any sufficiently advanced technology is indistinguishable from magic.

Arthur C. Clarke

