Biochemical Platform Analysis

Biochemical Platform Review
May 20, 2013
Alexandria, VA

Ryan Davis
National Renewable Energy Laboratory
Goals and Objectives

Biochemical Platform Analysis:
• Provides **process design and economic analysis support** for the biochemical conversion platform

• Maintains benchmark process models in Aspen Plus and related economic analysis tools, used to:
 • Assess cost-competitiveness and **establish process/cost targets** for biofuel production pathways
 • **Track progress** towards goals through State of Technology (SOT) updates
 • **Disseminate** rigorous, objective modeling and analysis information in a transparent way (the “design report” process)

• Helps to guide future research objectives by translating demonstrated or proposed advances into comparative economic cases

• This task **directly supports the Biomass Program** by assisting in the development of baseline costs and future cost targets
 • *Nov 2012 MYPP goal: “Develop integrated conversion process designs, assess techno-economic feasibility and progress, and evaluate sustainability/life-cycle impacts”*
Timeline
- Started: 1999
- Finish: 2017
- 75% complete

Budget
- Funding in FY11: $750,000
- Funding in FY12: $700,000
- Funding for FY13: $850,000
 - 100% DOE funding
- Project has been funded since October 1999; average funding = $429k/yr

Barriers
- Bt-E: Pretreatment Costs
- Bt-F: Cellulase Enzyme Production Cost
- Bt-K: Biological Process Integration

Partners
- Idaho National Lab (INL) – Feedstock interface activities
- NREL Biochemical Platform PIs
- Harris Group (Subcontractor)
- Brown and Caldwell (Subcontractor)
- Industrial partners
Project Overview

- NREL has a long history of establishing, maintaining, and exercising rigorous process models
 - Set objective, transparent benchmarks for a single plausible conversion pathway
 - Quantify economic impact of funded R&D improvements relative to benchmarks
 - Evaluate sensitivities to uncertainties, process alternatives
 - “Basic engineering” and process optimization

- **Phased approach:**
 1. *Develop baseline models using best available data*
 2. *Validate and peer review modeling assumptions*
 3. *Assist in cost target development*
 4. *Iterate with researchers and external stakeholders as new data becomes available to refine models*

- **Types of analysis:**
 - Techno-economic analysis (TEA)
 - Lifecycle analysis (LCA)/sustainability metrics

- **Focus of biochemical analysis task:**
 - 2001-2012: Cellulosic ethanol
 - Beginning 2013: Hydrocarbon fuels/ blend-stocks

Tracking Progress on Ethanol

<table>
<thead>
<tr>
<th>Year</th>
<th>Conversion</th>
<th>Feedstock</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>$9</td>
<td>$2</td>
</tr>
<tr>
<td>2002</td>
<td>$9</td>
<td>$2</td>
</tr>
<tr>
<td>2003</td>
<td>$9</td>
<td>$2</td>
</tr>
<tr>
<td>2004</td>
<td>$9</td>
<td>$2</td>
</tr>
<tr>
<td>2005</td>
<td>$9</td>
<td>$2</td>
</tr>
<tr>
<td>2006</td>
<td>$9</td>
<td>$2</td>
</tr>
<tr>
<td>2007</td>
<td>$9</td>
<td>$2</td>
</tr>
<tr>
<td>2008</td>
<td>$9</td>
<td>$2</td>
</tr>
<tr>
<td>2009</td>
<td>$9</td>
<td>$2</td>
</tr>
<tr>
<td>2010</td>
<td>$9</td>
<td>$2</td>
</tr>
<tr>
<td>2011</td>
<td>$9</td>
<td>$2</td>
</tr>
<tr>
<td>2012</td>
<td>$9</td>
<td>$2</td>
</tr>
</tbody>
</table>

FY06 included in FY07
Approach to Modeling Conversion Cost

Conceptual Biochemical Conversion Process

- Process model in Aspen Plus based on NREL research (TEA modeling is highly integrated with researchers)
- Modeled conversions are based on demonstrated pilot-scale performance in 2012
- Assumes n^th-plant project cost factors and financing (ignores first-of-a-kind risks)
- Discounted cash-flow ROR calculation determines minimum ethanol selling price (MESP)
- Credibility of analysis supported by vendor-based cost estimates, thorough vetting with industry and research stakeholders
- Research advances \rightarrow Higher modeled conversion \rightarrow Lower MESP
- Task management tracked using milestones
Accomplishments

Notable accomplishments (FY11-12):
• Completed biochemical ethanol Design Report update (2011)
 • Revisited all major design/costing assumptions with engineering subcontractor
 • Incorporated R&D learnings from prior years
• Revisited wastewater treatment section design and cost estimates (2011-2012)
 • Worked directly with wastewater vendor to update WWT estimates
• Demonstrated achievement of meeting the 2012 MESP target of $2.15/gal ethanol based on NREL pilot demonstration runs
• Demonstrated reduced GHG emissions for the biorefinery conversion process associated with the 2012 SOT model relative to the 2011 design report case

Current status (FY13):
• Shifting focus from ethanol to hydrocarbon fuels/blend stocks
• Establishing new pathway model for biological conversion of sugars to long-chain hydrocarbons
• Evaluating alternative processing approaches to further optimize integrated process and reduce production costs
Accomplishments: Ethanol Design Report Update

Motivation for the update

- Incorporate process integration research from the last decade into a 2012-ready design
- Revisit all major assumptions
- Improve model stability and usability
- Update equipment and raw material costs
- Validate model by thorough peer review/vetting

Significant changes

- New feedstock composition and cost
- Detailed pretreatment reactor quote
- Revised other major CAPEX estimates
- On-site enzyme production section
- All-new wastewater treatment section
- Updated direct-cost and financing assumptions
- This update was nearly complete during Feb 2011 Peer Review, but was not yet released
Major Updates in Design Report

Feedstock updates:
- Composition (lower carbohydrates + lignin)
- Cost ($50.90 → $58.50/dry ton)

Pretreatment updates:
- Whole-slurry NH₃ conditioning replaces S-L separation + liquor-phase conditioning with lime

Enzymes:
- Replace purchased enzymes with on-site enzyme production

Hydrolysis/Fermentation:
- Replace continuous SSCF mode of operation with batch SHF

Table 4. Corn Stover Composition from the 2002 Design [2] and the Present Design

<table>
<thead>
<tr>
<th>Component</th>
<th>2002 Design (dry wt %)</th>
<th>Present Design (dry wt %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucan</td>
<td>37.40</td>
<td>35.05</td>
</tr>
<tr>
<td>Xylan</td>
<td>21.07</td>
<td>19.53</td>
</tr>
<tr>
<td>Lignin</td>
<td>17.99</td>
<td>15.76</td>
</tr>
<tr>
<td>Ash</td>
<td>5.23</td>
<td>4.93</td>
</tr>
<tr>
<td>Acetate a</td>
<td>2.93</td>
<td>1.81</td>
</tr>
<tr>
<td>Protein</td>
<td>3.10</td>
<td>3.10</td>
</tr>
<tr>
<td>Extractives</td>
<td>4.88</td>
<td>1.46</td>
</tr>
<tr>
<td>Arabinan</td>
<td>2.92</td>
<td>2.38</td>
</tr>
<tr>
<td>Galactan</td>
<td>1.94</td>
<td>1.43</td>
</tr>
<tr>
<td>Mannan</td>
<td>1.56</td>
<td>0.60</td>
</tr>
<tr>
<td>Sucrose</td>
<td>-</td>
<td>0.77</td>
</tr>
<tr>
<td>Unknown soluble solids b</td>
<td>1.18</td>
<td>-</td>
</tr>
<tr>
<td>Total structural carbohydrate</td>
<td>64.89</td>
<td>58.99</td>
</tr>
<tr>
<td>Total structural carbohydrate + sucrose</td>
<td>64.89</td>
<td>59.76</td>
</tr>
<tr>
<td>Moisture (bulk wt %)</td>
<td>15.0</td>
<td>20.0</td>
</tr>
</tbody>
</table>

DESIGN CASE OUTPUTS:
- $2.15/gal MESP
- 79.0 gal/dry ton ethanol yield
- $420MM Total Capital Investment
- $76 MM/yr Total Operating Cost

Wastewater treatment:
- Re-design WWT system to accommodate elevated levels of nitrogen and sulfur from NH₃ conditioning (produces (NH₄)₂SO₄ salts)
Framing the Analysis

Sensitivity analysis
- Critical element of TEA modeling
- Quantifies economic impact of uncertainties, risks, and future R&D improvements
- Beyond economic uncertainty associated with underlying analysis methodology, key cost sensitivities include enzyme loading, glucose yield, and acid loading
Accomplishments: FY12 SOT Demonstration - Tracking Progress on Ethanol

<table>
<thead>
<tr>
<th></th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012 Target</th>
<th>2012 SOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Ethanol Selling Price ($/gal)</td>
<td>$3.64</td>
<td>$3.57</td>
<td>$3.18</td>
<td>$2.77</td>
<td>$2.56</td>
<td>$2.15</td>
<td>$2.15</td>
</tr>
<tr>
<td>Feedstock Contribution ($/gal)</td>
<td>$1.12</td>
<td>$1.04</td>
<td>$0.95</td>
<td>$0.82</td>
<td>$0.76</td>
<td>$0.74</td>
<td>$0.83</td>
</tr>
<tr>
<td>Conversion Contribution ($/gal)</td>
<td>$2.52</td>
<td>$2.52</td>
<td>$2.24</td>
<td>$1.95</td>
<td>$1.80</td>
<td>$1.41</td>
<td>$1.32</td>
</tr>
<tr>
<td>Yield (Gallon/dry ton)</td>
<td>69</td>
<td>70</td>
<td>73</td>
<td>75</td>
<td>78</td>
<td>79</td>
<td>71</td>
</tr>
<tr>
<td>Feedstock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feedstock Cost ($/dry ton)</td>
<td>$77.20</td>
<td>$72.90</td>
<td>$69.65</td>
<td>$61.30</td>
<td>$59.60</td>
<td>$58.50</td>
<td>$58.50</td>
</tr>
<tr>
<td>Pretreatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solids Loading (wt%)</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
</tr>
<tr>
<td>Xylan to Xylose (including enzymatic)</td>
<td>75%</td>
<td>75%</td>
<td>84%</td>
<td>85%</td>
<td>88%</td>
<td>90%</td>
<td>81%</td>
</tr>
<tr>
<td>Xylan to Degradation Products</td>
<td>13%</td>
<td>11%</td>
<td>6%</td>
<td>8%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Conditioning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia Loading (g per L hydrolysate liquor)</td>
<td>12.9</td>
<td>12.9</td>
<td>9.8</td>
<td>4.8</td>
<td>3.8</td>
<td>4.8</td>
<td>1.6</td>
</tr>
<tr>
<td>Hydrolysate solid-liquid separation</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Xylose Sugar Loss</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
<td>1%</td>
<td>1%</td>
<td>0%</td>
</tr>
<tr>
<td>Glucose Sugar Loss</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Enzymes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enzyme Contribution ($/gal EtOH)</td>
<td>$0.39</td>
<td>$0.38</td>
<td>$0.36</td>
<td>$0.36</td>
<td>$0.34</td>
<td>$0.34</td>
<td>$0.36</td>
</tr>
<tr>
<td>Enzymatic Hydrolysis & Fermentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Solids Loading (wt%)</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>17.5%</td>
<td>17.5%</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>Saccharification Mode</td>
<td>Washed-solids</td>
<td>Washed-solids</td>
<td>Washed-solids</td>
<td>Washed-solids</td>
<td>Washed-solids</td>
<td>Whole-slurry</td>
<td>Whole-slurry</td>
</tr>
<tr>
<td>Combined Saccharification & Fermentation Time (d)</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Corn Steep Liquor Loading (wt%)</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>0.25%</td>
<td>0.25%</td>
<td>0.25%</td>
</tr>
<tr>
<td>Overall Cellulose to Ethanol</td>
<td>86%</td>
<td>86%</td>
<td>84%</td>
<td>86%</td>
<td>89%</td>
<td>86%</td>
<td>74%</td>
</tr>
<tr>
<td>Xylose to Ethanol</td>
<td>76%</td>
<td>80%</td>
<td>82%</td>
<td>79%</td>
<td>85%</td>
<td>85%</td>
<td>93%</td>
</tr>
<tr>
<td>Arabinose to Ethanol</td>
<td>0%</td>
<td>0%</td>
<td>51%</td>
<td>68%</td>
<td>47%</td>
<td>85%</td>
<td>54%</td>
</tr>
</tbody>
</table>
2012 SOT Updates vs 2011 Design Case

Deacetylation:
- Dilute (~0.4%) NaOH, 80 °C, 2 hr
- Removes acetate = improves hydrolysis + fermentation yields
- Reduces portions of non-fermentable components = reduced throughputs by 20-25% = reduced CAPEX

Pretreatment + Conditioning:
- Lower acid loading in PT reactor + lower acetic acid formation = lower NH$_3$ neutralization demand = reduced OPEX

Wastewater Treatment:
- Re-costed WWT section with vendor (Brown and Caldwell) = reduced CAPEX and OPEX
 - New WWT feed stream from deacetylation liquor, lower total salts and nitrogen due to pretreatment modifications
 - Reduction in AD retention time from 58 to 40 days
 - Nitrification no longer needed due to large reduction in feed N
Achieving 2012 SOT cost target

Key process results:

<table>
<thead>
<tr>
<th>Metric</th>
<th>2012 Target</th>
<th>2012 Demonstrated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enzyme Loading (mg/g cellulose)</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>Cellulose to Ethanol</td>
<td>86%</td>
<td>74%</td>
</tr>
<tr>
<td>Xylan to Xylose</td>
<td>90%</td>
<td>81%</td>
</tr>
<tr>
<td>Xylose to Ethanol</td>
<td>85%</td>
<td>93%</td>
</tr>
<tr>
<td>Arabinose to Ethanol</td>
<td>85%</td>
<td>54%</td>
</tr>
<tr>
<td>Ethanol Yield (gal/ton)</td>
<td>79</td>
<td>71</td>
</tr>
</tbody>
</table>

Key cost results:

<table>
<thead>
<tr>
<th>Capital Costs ($MM)</th>
<th>2011 Design Report</th>
<th>2012 SOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pretreatment</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>Neutralization/Conditioning</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Saccharification & Fermentation</td>
<td>31</td>
<td>25</td>
</tr>
<tr>
<td>On-site Enzyme Production</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>Distillation and Solids Recovery</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>Wastewater Treatment</td>
<td>49</td>
<td>41</td>
</tr>
<tr>
<td>Storage</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Boiler/Turbogenerator</td>
<td>66</td>
<td>68</td>
</tr>
<tr>
<td>Utilities</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Total Installed Equipment Cost</td>
<td>232</td>
<td>210</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operating Costs ($MM/yr)</th>
<th>2011 Design Report</th>
<th>2012 SOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feedstock + Handling</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Sulfuric Acid + Ammonia</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Glucose (Enzyme Production)</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Other Raw Materials</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Waste Disposal</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Net Electricity</td>
<td>-7</td>
<td>-9</td>
</tr>
<tr>
<td>Fixed Costs</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Total Operating Cost</td>
<td>76</td>
<td>68</td>
</tr>
</tbody>
</table>

10% decrease in costs ($), balanced by 10% decrease in yield (gal) = $2.15/gal
NREL as part of DOE’s commitment to sustainability:

- Evaluating sustainability metrics for the biorefinery conversion models
- Assessing life-cycle impact and environmental sustainability scenarios (e.g., tradeoffs between conversion technology options)

Sustainability Metrics Results: 2012 SOT vs 2011 Design Case

<table>
<thead>
<tr>
<th>Metric</th>
<th>2011 Design Case</th>
<th>2012 SOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHG Emissions (kg CO₂e/GJ ethanol)</td>
<td>-0.4</td>
<td>-14.9</td>
</tr>
<tr>
<td>GHG Emissions (kg CO₂e/gal ethanol)</td>
<td>-0.03</td>
<td>-1.2</td>
</tr>
<tr>
<td>Consumptive Water Use (gal/gal ethanol)</td>
<td>5.4</td>
<td>6.6</td>
</tr>
<tr>
<td>Net Fossil Energy Consumption (MJ/MJ ethanol)</td>
<td>0.01</td>
<td>-0.17</td>
</tr>
<tr>
<td>Net Fossil Energy Consumption (MJ/gal ethanol)</td>
<td>0.9</td>
<td>-13.7</td>
</tr>
<tr>
<td>Fuel Yield (gal ethanol/dry ton)</td>
<td>79.0</td>
<td>70.9</td>
</tr>
<tr>
<td>Carbon-to-Fuel Efficiency (ethanol/biomass)</td>
<td>30.2%</td>
<td>27.1%</td>
</tr>
</tbody>
</table>

Facility Cooling Water Demands:

- **2011 Design Case**
 - Condensing Turbine 52%
 - Chiller condenser 14%
 - Hydrolysis cooler 11%
 - Hydrolyzate flash condenser 7%
 - Pre-fermentation cooler 6%
 - Others 3%

- **2012 SOT Case**
 - Condensing Turbine 64%
 - Chiller condenser 13%
 - Hydrolysis cooler 8%
 - Hydrolyzate flash condenser 2%
 - Pre-fermentation cooler 5%
 - EtOH product cooler 5%
 - Others 5%

Facility Cooling Water Demands:

- Net Total
 - Condensing Turbine 52%
 - Chiller condenser 14%
 - Hydrolysis cooler 11%
 - Hydrolyzate flash condenser 7%
 - Pre-fermentation cooler 6%
 - Others 3%

Sustainability metrics for biochemical conversion step are driven largely by power coproduct

- Lower ethanol yield in SOT case = more unconverted material to boiler = more GHG and fossil energy offsets from increased power coproduct
- More power coproduct = higher cooling water demands for steam turbine = higher net water consumption

Chart Notes:

- **2011 Design Case**
 - Net Total 0.85
 - Others 5%
 - WWT 4%
 - FGD 3%
 - EH/ Fermentation 3%
 - Enzyme 2%
 - Pretreatment/ Conditioning 1%
 - Electricity Credit 1%
 - Net Total 0.85

- **2012 SOT Case**
 - Net Total -1.20
 - Others 3%
 - WWT 4%
 - FGD 3%
 - EH/ Fermentation 3%
 - Enzyme 2%
 - Pretreatment/ Conditioning 1%
 - Electricity Credit 1%
 - Net Total -1.20
Progress on Transition to Hydrocarbon Biofuels

• Moving forward beyond FY12: transitioning to hydrocarbon biofuel pathways

• Biochemical approaches:
 • Catalytic upgrading of sugars (aqueous-phase reforming)
 • Biological upgrading of sugars
 • Intracellular oil production/extraction (e.g., heterotrophic algae)
 • Oil secretion (microbial)

• NREL recently released tech memos highlighting key advantages and research needs for biological + catalytic pathways (March 2013)
NREL is beginning to investigate process/economic potential for biological and catalytic hydrocarbon pathways

• Published technical memos March 2013

• Biological conversion: advantages
 • Organisms may be tailored to produce targeted fuel components with high-value or desirable properties
 • Most metabolic pathways will produce a hydrocarbon intermediate requiring mild upgrading at marginal cost

• Catalytic conversion: advantages
 • Flexibility to utilize a wider range of biomass deconstruction products (organic acids, furanics, lignin deconstruction products)
 • Produces drop-in blendstocks and potential for biomass-based chemicals (e.g. para-xylene)

• Key research needs
 • Reduce sugar/hydrolysate production costs and maximize optimization
 • Understand separation/conditioning requirements for hydrolysate, minimize cost of hydrolysate conditioning
 • Optimize design and scale for aerobic fuel production (biological)
 • Maximize sugar/carbon utilization and microbe performance (biological)
 • Increase catalyst selectivity towards desired fuel products (catalytic)
 • Improve catalyst lifetime and durability (catalytic)
 • Define product separation and upgrading requirements
 • Evaluate co-product opportunities to utilize additional components, e.g. lignin, acetate
NREL TEA modeling is highly relevant to DOE goals:

- Helps to guide DOE decisions, out-year target projections
 - Technical targets (yields, process performance, etc)
 - Cost targets (DOE goal: cost-competitive cellulosic ethanol by 2012)
 - Validation of modeling assumptions
- Identifies key R&D directions (yields, coproduct opportunities, etc)
- Analysis can serve a wide variety of stakeholders
 - Industry (facilitate interaction between industry, NREL, DOE)
 - Research community, decision makers

Nov 2012 MYPP Performance Goal:
“Through R&D, make cellulosic biofuels competitive with petroleum-based fuels at a modeled cost for mature technology of $3 per gallon gasoline equivalent (GGE)”
Success Factors and Challenges

Success Factors
• Maintaining interaction with researchers; serving as interface between researchers, DOE, and broader community
• Critical to maintain credible engineering analyses that are transparent and unbiased
 • These analyses represent a public dissemination of DOE research and a starting point for private industry
• Leverage engineering contractor/vendor estimates for design and cost information
 • Reduce uncertainty in underlying cost estimates
• Through process design, highlight barriers to commercialization in under-researched areas of the process

Challenges
• Transition to hydrocarbon fuels brings new uncertainties on state of technology, future potential
 • Performance for biological production of hydrocarbon fuels, scale-up implications are poorly understood
• Need to increase carbon efficiencies to fuels/co-products, possibly beyond fermentable fraction of biomass
 • Further evaluate co-product opportunities
 • Requires holistic approach to process design, integration, and biomass utilization
• Limited definition of fuel product/blend stock specifications for new hydrocarbon pathways
• Limited sharing of lessons learned by industry
Future Work

- Development of **biological** conversion of sugars to hydrocarbons technology pathway model (FY13)
 - Working with an engineering subcontractor to establish pertinent design/cost estimates for modeled pathway
 - Document new pathway TEA model and cost targets in a new “design report” technical memo for public dissemination
 - Collaborations under way with NREL Bioprocess Integration (BPI) and Lignin tasks to quantify process/cost implications for aerobic system designs and lignin utilization pathways
 - Establish current State of Technology (SOT) estimates using best available data
- Development of **catalytic** conversion of sugars to hydrocarbons technology pathway model (FY14)
 - Establish new pathway model for catalytic conversion of cellulosic biomass hydrolysate to hydrocarbons
 - Partners: PNNL, industry stakeholders

<table>
<thead>
<tr>
<th>Task Milestones/Activities</th>
<th>FY13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oct</td>
</tr>
<tr>
<td>Ethanol close-out activities</td>
<td></td>
</tr>
<tr>
<td>Wastewater design model, phase 2</td>
<td>▼</td>
</tr>
<tr>
<td>Enzyme cost model scenario studies</td>
<td>▼</td>
</tr>
<tr>
<td>Biochemical ethanol SOT sustainability metrics</td>
<td>▼</td>
</tr>
<tr>
<td>Hydrocarbon pathways: biological conversion</td>
<td></td>
</tr>
<tr>
<td>Deliver biological conversion of sugars to hydrocarbons design case</td>
<td></td>
</tr>
<tr>
<td>Report on industry best practices for scale-up of aerobic systems</td>
<td></td>
</tr>
<tr>
<td>TEA of lignin utilization pathways</td>
<td>▼</td>
</tr>
<tr>
<td>FY13 State of Technology</td>
<td></td>
</tr>
<tr>
<td>Hydrocarbon pathways: catalytic conversion</td>
<td></td>
</tr>
<tr>
<td>FY14 milestones have not yet been developed</td>
<td></td>
</tr>
</tbody>
</table>

▲ = Joule milestone, ▼ = E-milestone, ▶ = D-milestone
Summary

• Biochemical Analysis task has made important achievements in FY12-13
 • Ethanol design report completed and published
 • Ethanol SOT complete, demonstrated achieving $2.15/gal MESP target
 • Sustainability Metrics work projects reduced GHG, fossil energy profiles for SOT
 pathway relative to design case targets
 • Support DOE MYPP efforts (baseline + out-year target projections)
 • Support broader research community (transparent, rigorous models; quantify R&D
 improvements)

• Currently transitioning to hydrocarbon biofuel pathways
 • FY13 work focusing on biological conversion of sugars
 • Analysis to date suggests important research needs exist to understand microbe
 metabolic performance on cellulosic substrates, optimize process integration for
 synergistic benefits, and increase carbon efficiencies

• Considerable activity planned for FY13-14
 • Design report on biological conversion to hydrocarbons
 • Further investigate process and design alternatives
 • Direct microbial conversion, alternative pretreatments, etc.
 • Establish new design model for catalytic sugar conversion
 • Investigate requirements on upstream process modifications
 (pretreatment, hydrolysis) associated with catalytic processing
Questions?

Acknowledgements

• Thank you to…

 • Bioenergy Technologies Office – Biochemical Platform: Valerie Sarisky-Reed, Leslie Pezzullo, Joyce Yang, Neil Rossmeissl, Kristen Johnson, Zia Haq, Alicia Lindauer

 • NREL researchers: Ling Tao, Mary Biddy, Eric Tan, Michael Talmadge, Chris Scarlata, Steve Phillips, Rick Elander, Dan Schell, Gregg Beckham, Jim McMillan, Nancy Dowe, Min Zhang, Mike Himmel, David Johnson, Phil Pienkos, Nick Nagle, Ed Wolfrum, Adam Bratis

 • National Laboratory Partners: PNNL, INL, ORNL, ANL, SNL

 • Industrial Partners
• Does not incorporate technology advancements outside of NREL. If it is to advance the SOT it must look beyond NREL’s achievements.
• The models do incorporate technology external to NREL, as they consider improvements in cellulase enzyme preparations and fermenting strains; this type of research is not currently performed to a large extent at NREL. Additionally, the new hydrocarbon models currently being built must rely heavily on published or otherwise publicly-available data, as SOT performance for the associated organisms is not available within NREL.

• The project would like to have more input from industry but this has proven difficult. It advances the SOT “in theory”.
• Typically it is difficult to solicit data from industry that can be shared publicly. NREL has a number of collaborations with industry, but many of these are separated from the DOE Platform work. The inputs from industry which may have a better chance of being made public are typically organizations which receive DOE funding, as fully private entities are not likely to provide their best performance results to us, at least to the review standards that we require. While the only SOT models which fully demonstrate the true commercial state of technology would be those which are based on commercial-scale performance, the NREL 2012 SOT models are based on demonstrated values at pilot-scale for all “ISBL” parameters.

• An improvement would be to include sensitivity analyses that show the sensitivity of the model, including how existing variability in data … may affect the model.
• NREL places a high priority on sensitivity analyses in all modeling efforts, as any model is only as good as the inputs that go into it. During the 2011 peer review, sensitivity analysis could not be strongly showcased as the design report numbers had not yet been finalized. This presentation includes sensitivity analysis from the design report; including sensitivity to uncertainties, risks, as well as cost impacts to potential future R&D improvements.
Publications and Presentations

• L. Tao, R. T. Elander and A. Aden, Process and Technoeconomic Analysis of Leading Pretreatment Technologies; Invited Book Chapter; Editor Charles Wyman; Accepted, April 2012.

Design Report Update: Comparison of Previous Model to New Model

<table>
<thead>
<tr>
<th>Metric (2012 design case)</th>
<th>2002 Model</th>
<th>2011 Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>MESP, 2007$</td>
<td>$1.49/gal</td>
<td>$2.15/gal</td>
</tr>
<tr>
<td>Ethanol yield, gal/dry ton</td>
<td>89.9</td>
<td>79.0</td>
</tr>
<tr>
<td>Total Capital Investment, 2007$</td>
<td>$230MM</td>
<td>$420MM</td>
</tr>
<tr>
<td>Variable Operating Cost, 2007$</td>
<td>$54MM/yr</td>
<td>$65MM/yr</td>
</tr>
<tr>
<td>Fixed Operating Cost, 2007$</td>
<td>$9MM/yr</td>
<td>$11MM/yr</td>
</tr>
<tr>
<td>Direct Cost Factor</td>
<td>51% of purchased cost</td>
<td>91% of purchased cost</td>
</tr>
<tr>
<td>Indirect Cost Factor</td>
<td>48% of total direct cost</td>
<td>60% of total direct cost</td>
</tr>
<tr>
<td>% Equity</td>
<td>100%</td>
<td>40%; Loan 8% APR, 10 yr</td>
</tr>
</tbody>
</table>

- **2002**: Higher uncertainty in process conversion performance, optimistic project cost assumptions
- **2011**: High confidence in performance assumptions, stronger project cost assumptions due to feedback from Harris, DOE, and peer reviewers
- New MESP carries considerably lower uncertainty

Metric Adjustments

<table>
<thead>
<tr>
<th>Metric Adjustment</th>
<th>$/gal Impact</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feedstock Cost</td>
<td>$0.10</td>
<td>Increased from $50.90 to $58.50 (new grower payment)</td>
</tr>
<tr>
<td>Feedstock Composition</td>
<td>$0.08</td>
<td>Lower ethanol yield using more representative feedstock composition</td>
</tr>
<tr>
<td>Enzyme</td>
<td>$0.22</td>
<td>On-site production model predicted $0.34/gal versus $0.12/gal in the purchased model</td>
</tr>
<tr>
<td>Electricity Credit</td>
<td>-$0.07</td>
<td>More electricity is generated from biomass but less exported due to higher internal power requirements (e.g., enzyme production and WWT)</td>
</tr>
<tr>
<td>Capital</td>
<td>$0.30</td>
<td>Net increase in the cost of required capital equipment and higher direct and indirect cost factors</td>
</tr>
<tr>
<td>Financial Assumptions</td>
<td>-$0.06</td>
<td>100% Equity to 40% Equity at 8% interest</td>
</tr>
<tr>
<td>Chemicals</td>
<td>$0.06</td>
<td>New chemical costs</td>
</tr>
<tr>
<td>Fixed Costs</td>
<td>$0.03</td>
<td>New labor costs</td>
</tr>
<tr>
<td>Total</td>
<td>$0.66</td>
<td>($1.49 + $0.66 = $2.15)</td>
</tr>
</tbody>
</table>