

2.3.1.11: Low-Energy Magnetic-Field Separation using Magnetic Nanoparticle Solid Absorbents

May 23, 2013 DOE Biomass Platform – Bioenergy Technologies Area

> Richard Brotzman Argonne National Laboratory

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Goals

- Demonstrate low-energy, magnetic field separation of hydrocarbon fuels reduces process energy use and improves process economics
- Integrate nanostructured adsorbents into bioprocesses to establish a prototype separation process for hydrocarbon fuels
- Technology spans between biomass processes
 - Applicable to targeted products and intermediates
 - Enables investigation of quality requirements of intermediates and products

Abbreviations

- HC: hydrocarbon
- SN: superparamagnetic nanoparticles
- NP: nanoparticle
- NA: nanostructured adsorbent
- D: diameter (NP)
- ALD: Atomic Layer Deposition
- TMA: trimethyl aluminum, Al(CH₃)₃
- IQ: installation qualification
- OQ: operation qualification
- PQ: process qualification
- TLC: thin-layer chromatography
- HPLC: high pressure liquid chromatography

AB sequence for ALD of one monolayer. Notches represent reactive sites in substrate for reaction A.

Exposing surface to reactant-A results in selflimiting chemisorption of a monolayer of A species. The resulting surface becomes the starting substrate for reaction B.

Subsequent exposure to molecule B covers the surface with a monolayer of B species. Consequently, one AB cycle deposits one monolayer of compound AB and regenerates the initial surface.

Quad Chart Overview

Timeline

- Project start date: Oct 1, 2011
- Project end date: Sept 30, 2014
- Percent complete: 45% FY2013

Budget

- Total project funding
 - DOE: \$ 350,000
 - Contractor: \$ 0
- Funding received in FY12: \$ 150,000
- Funding for FY13: \$ 200,000
- ARRA Funding: \$ 0

Barriers

- Scale-up SN
- Nanostructured adsorbents
- Remove adsorbed HCs from NA

Partners

- Philip Laible Argonne Biology
- Leveraged activities
 - BETO project to adsorb sugars
 - ARPA-E nanostructured magnets
 - LDRD magnetic nanostructures

Project Overview

- Demonstrate magnetic NA separation of HC fuels from biochemical process
- Program tasks
 - Fabricate surface-treated NA (Month 3)
 - Determine hydrocarbon adsorption capacity and selectivity from mock fermentation broth (Month 6)
 - Fabricate prototype magnetic capture process system (Month 6)
 - Determine an efficient desorption process (Month 9)
 - Quantify magnetic separation (Month 12)
- Metrics
 - NA: surface-treated NP (<40-nm) covalently tethered together
 - HC adsorption capacity: extraction ratio > 1.75
 - Prototype magnetic capture process: IQ, OQ, PQ
 - Desorption target: >75% desorption
 - Determine turn-number for 10% hydrocarbon separation
 - Demonstrate NA stability and reuse

1. NA Separation Approach

Unique synthesis process: magnetic NP

- Fe vs. $Fe_2Co \rightarrow$ greater saturation magnetization and stability
- X Colloidal method
- Solid-state reaction
- Assembly of magnetic NP
 - Chemically bond NP using polymer chains
 - Forms elastic network like a rubber band
- Unique: surface treatment on NP to adsorbs HC fuel
 - Heterogeneous gas phase process
 - No process solvents
- Desorption harvest HC fuel
 - Magnetic
 - Flotation

23 May 2013

2. Technical Progress: Schedule

Task, Milestone	Tasks, Milestones	Planned Completion Date	Metrics	% Actual Completion
E	Fabricate NA	31-Dec-12		100
E ML 1	NA Fabricated	31-Dec-12	~400-nm adsorbent comprised of surface-treated (<40-nm) covalently tethered together	100
F	Hydrocarbon adsorption	31-Mar-13		50
F ML 1	Hydrocarbon adsorption	31-Mar-13	Adsorption capacity quantified	
G	Fabricate process system	31-Mar-13		100
G ML 1	IQ, OQ, PQ Complete	31-Mar-13	IQ, OQ, PQ complete	100
Н	Desorption process	30-Jun-13		
H ML 1	Identify desorption process	30-Jun-13	Quantify desorption methods with target of >75% desorption	
1	Magnetic separation	30-Sep-13		
I ML 1	Quantify magnetic separation	30-Sep-13	Turn-number for 10% separation of hydrocarbons from mock fermentation broth, and demonstrate NA stability and reuse.	

2.E.1 NP Synthesis

- Superparamagnetic Fe₂Co
 - X Colloidal Fe₂Co:¹

D ~10-nm; iron chloride and cobalt acetate by polyol reduction at 130°C in ethylene glycol using sodium hydroxide and $H_2PtCl_6\bullet 6H_2O$ (~ 2.4×10-5 mol/L) \$15,000/kg

- Solid-state reaction of $Fe(NO_3)_3$ and $Co(NO_3)_2$

Fe₂Co metal alloy cylinders (D ~10-nm, L ~30-nm)²

Oxidize nitrates, fracture, reduction – \$350/kg

- Passivate surface
 - AI_2O_3
 - ALD: TMA/H₂O

¹ Adv. Mater. (2006) **18**: 3154-3159.

² Fridrikh, S.V., et al., *Physical Review Letters* (2003) **90**(14): p. 144502.

2.E.2 NA Network and Surface Treatment

- NA Network
 - Chemically bond NP using polymer chains bi-functional coupling
 - 1,8-bis(triethoxysilyl)octane •
 - bis(3-triethoxysilylpropyl)poly-ethylene oxide.
 - Forms elastic network junction functionality ~ 2.2 to 2.5
- NP Surface Treatment
 - Heterogeneous vapor-phase polymerization hydrocarbon adsorption
 - Lyophilic: octyl (C_8), octadecyl (C_{18}), phenyl ($-C_6H_5$)
 - Hydrophilic: hydroxyl (-OH), amino (-NH₂), carboxyl (-COOH)
 - ST characterized by swelling, TGA, MAS, and CP MAS solid-state NMR techniques
- Process

2.F.1 Bioenergy System and Hydrocarbon Fuels

- Adsorb Isoprenols from doped fermentation broth
- Richness of the medium
 - Minimal (mimicking selective fermentation schemes required for some autotrophic or phototrophic conversion processes)
 - Rich (more realistic cultures that may result from growth on cellulosic hydrolysates and more versatile heterotrophic production schemes)
- Length of fuel carbon chain
 - Phytol (C₂₀; diesel)
 - Farnesol (C₁₅; diesel/ jet)
 - Geraniol (C₁₀; gas/jet)
 - Isoprenol (C₅; gas)

Argonne - Magnetic Separation (Brotzman) 23 N

23 May 2013

2.F.2 Monitor and Quantify Fuel Recovery

- TLC with iodine staining
 - Rapid and efficient recovery methods
 - Generic hydrocarbon identification
 - Impurities identified as media composition / relevant controls initially well defined
- HPLC and GCMS available
- Growth (impairment) of bacterial strains in presence of NA monitored by final cell densities and growth rates
- C₂₀ and C₁₅ adsorption ongoing from minimal and rich media

2.G Fabricate Process System

- 3-liter scale prototype magnetic capture process
- IQ, OQ, and PQ complete
- Next tasks
 - Complete adsorption of fuel from fermentation broth
 - Optimize NA
 - Identify desorption process
 - Magnetic pulse
 - Mechanical
 - Recovery fluid pH flux
 - Quantify magnetic separation
 - Flotation

3. Relevance

- Biochemical Conversion
 - Bt-I Cleanup/Separation
 - Bt-K Biological process integration
- Applications of expected outputs
 - Provides initial data sets on the feasibility of using NP to separate HC from bioprocesses
 - Develops schemes to integrate HC fuel separation and recovery into bioprocesses
 - Reactor-integrated separations: HC fuel production and recovery in concert
 - Maximize production levels
 - Reduce produce toxicity/poisoning
 - Continuous culture approaches

4. Critical Success (Risk) Factors

Risk	Mitigation Approach	
Separation of NA from growth medium	 Magnetic capture of NA from process flow stream Flotation of NA followed by magnetic capture Hydrocyclone separation 	
NA become entangled with biological organism	 Disentangle under turbulent mixing Increase residence time in bioreactor to effect flotation separation 	
NA stability and reuse	Reformulate NAMix bioreactor during adsorptionFlotation	
HC recovery is low	 Stationary NA with mechanical recovery Multistage recovery – magnetic flux with mechanical recovery Recovery fluid pH flux 	

Future Work

- Through September 30, 2013
 - Complete HC adsorption
 - Evaluate ease of NA separation from biochemical reactor
 - Evaluate ease of HC recovery from NA
 - Evaluate strategies to recover > 10% total HC fuel
- Through September 30, 2014
 - Integrate 2013 HC fuel separation performance with LCA to establish cost/performance goals
 - Evaluate separations in bioprocesses that make a distribution of hydrocarbons, and investigate the quality requirements of hydrocarbon intermediates and products
 - Leverage magnetic nanostructure programs to determine adsorbent scale-up metrics
 - Go/No-Go: cost/performance of NA versus conventional HC separation and recovery processes

Summary

- The objectives are relevant to BETO's Bioenergy Technology Area and will provide initial data sets on the feasibility of using NP to separate HC from bioprocesses
- The approach is effective by accessing a large HC adsorption separation process space and will be coupled with HC fuel recovery
- The work has many technical accomplishments NP synthesis, NP surface treatment, adsorbent network formation, HC adsorption, and prototype magnetic capture process
- The work has leveraged technology from ARPA-E, Argonne LDRD, and BETO programs
- Success (risk) factors were identified along with mitigation strategies
- Scale-up processing methodologies identified