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Goal Statement 

• Third generation cellulosic ethanol is an emerging solution that will make strong 
contributions to American domestic energy needs. Technology underlying this 
process will replace commodity enzymes with engineered microbes to convert 
biomass derived ligncellulose feedstocks into biofuels and value added chemicals. 
The approach used here is based on consolidated bioprocessing. Thermoacidophilic 
microbes belonging to the Domain Archaea, will be employed for the deconvolution 
and saccharification of lignocellulose to maximize biofuel yields. Biomass 
pretreatment (hot acid) will be combined with fermentation using an extremely 
thermoacidophilic microbial platform. The identity and fate of released sugars will be 
controlled using metabolic blocks combined with added biochemical traits where 
suitable.  
 

• LC/MS analysis supported through the newly established Nebraska Bioenergy 
Facility  will provide general support for bioenergy researchers at the University of 
Nebraska  
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Quad Chart Overview 

• Project start date:7-01-2008  

• Project end date  6-29-2013/14 

• Percent complete: 90% 

• Barriers addressed 
– Bt-J. Fuels Organism 

Development 
– Bt-F. Cellulase Enzyme 

Production Cost 
– Bt-H. Enzyme Biochemistry 

• Funding for FY11 $50K/20%   
• Funding for FY12 $50K/20%  

• Funding for FY13 $50K/20%  

• 5 years / $380K per year av. 

Timeline 

Budget 

Barriers 

• Algae Researchers UN-L  
• Sandia Ntl. Lab contractors 
• DOE-JGI 

Partners 
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Project Description:  

• This project will examine the utility of diverse thermoacidophilic taxa for 
biomass processing through a combination of genetic, biochemical and 
chemical methodologies to achieve a reduction in pretreatment costs and 
process time. A core facility will be established to further regional efforts on 
development of bioenergy crops.  
 

Goals and Objectives:   
• This is a consolidated bioprocessing project. Using methods pioneered by 

the Blum lab, the utility of extremely thermoacidophilic microbes will be 
established for the deconvolution and saccharification of lignocellulose to 
maximize biofuel yields. Biomass pretreatment (hot acid) will be combined 
with fermentation using an extremely thermoacidophilic microbial platform. 
The identity and fate of released sugars will be controlled using metabolic 
blocks combined with added biochemical traits where suitable. Acquired 
equipment will also be used to create a Bioenergy Core Facility (BCF) that 
will provide general support for bioenergy researchers at the University of 
Nebraska. 
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Consolidated Biomass Processing Using 
Saccharifying Thermoacidophiles 
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Extremely Thermoacidophilic 
Archaea 

•Acidophilic hyperthermophiles that grow at 
pH 3-5, 65-95oC. 

• Crenarchaeota phylum. 

• Chemoheterophic and obligate aerobes (with 
introduced fermentation traits). 

• Used globally for scale-up oxidative 
biotransformations. 
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1- Approach 
A. “Screening thermoacidophilic taxa” for the ability to 
deconvolute lignocellulose and depolymerize associated 
carbohydrates 
 
B. Evaluate and respond to formation of “inhibitors” that arise 
during incubation of lignocellulose under heated acidic 
conditions 
 
C. Identify and engineer “sugar flux channeling and catabolic 
blocks” that control and where necessary redirect metabolic 
pathways to maximize sugar concentrations 
 
D. Expand the hydrolytic capacity of extremely thermoacidophilic 
microbes through the “addition of deconvolution traits”.  
E. Establish the Nebraska Bioenergy Facility (NBF) at the 
University of Nebraska-Lincoln.  
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2 - Technical Accomplishments/ 
Progress/Results 

Summary of Work to Date - Accomplishments (FY13-current):  
• SARC (super acid resistant crenarchaeota) cell lines established new 

record in thermoacidophily approaching pretreatment compatibility.  
• Mechansims underlying resistance to fermentation inhibitors including 

furfural and HMF have been identified and engineered into cell lines. 
• Type species cell ines have been engineered that are catabolically 

blocked for glycolysis. 
• Hot acid-stable endoglucanases have been characterized in vivo and 

in vitro. 
• A platform system has been discovered that confers hot acid 

resistance on enzymes based on protein glycosylation.  
• The UNL Bioenergy core facility founded with DOE funding continues 

to conduct algal and extremophile bioreactor fermentations (in 
addition to LC-MS analysis of lipids) for university researchers.  
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Thermoacidophilic crenarchaeota: 
pH optima 3.5 – 4.0 

Temp optima 75-80°C 

• Analysis of new environmental 
isolates revealed trade off 
between more extreme 
acidophily and heterotrophy 

• Retention of heterotrophy 
seems coupled to higher pH 
optima 

 

Type Strains New Isolates 
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Fermentation Inhibitors: ADH-10 Inactivation 
Results in Resistance to Furfural & HMF 
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Metabolic Blocks:Transporter Inactivation 
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Growth of unadapted wild type S. solfataricus and 
amino acid auxotrophs on pretreated switchgrass. 
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Saccharolytic Enzymes: Hot Acid Stable 
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In vivo activity of Sso1354 
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In vivo activity of Sso1354 
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Platform for Engineering Hot Acid Resistance 
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• Publications:  
• Renewable Energy Global Innovations selected our recent publication Tevatia 2012 

(see below) for summary presentation in their next series on the Energy Sector.  
• Lalithambika S, Peterson L, Dana K, Blum P. 2012. Carbohydrate Hydrolysis and 

Transport in the Extreme Thermoacidophile Sulfolobus solfataricus. Appl. Environ. 
Microbiol. 78(22):7931-8. 

• Maezato Y., Blum P. 2012. Survival of the Fittest: Overcoming Oxidative Stress at the 
Extremes of Acid, Heat and Metal. Life. 2(3):229-242. 

• Tevatia, R., Y. Demirel, and P. Blum. 2012. Kinetic modeling of photoautotropic 
growth and neutral lipid accumulation in terms of ammonium concentration in 
Chlamydomonas reinhardtii. Bioresource Technology 119:419-424. 

• Maezato, Y., K. Dana and P. Blum. 2011. Engineering Thermoacidophilic Archaea 
Using Linear DNA Recombination. Methods Mol Biol. 765:435-45. 

• Friest. J. A., Y. Maezato, S. Broussy, P. Blum and D. B. Berkowitz. 2010. Use of a 
Robust Dehydrogenase from an Archael Hyperthermophile in Asymmetric Catalysis-
Dynamic Reductive Kinetic Resolution Entry into (S)-Profens. J. Am. Chem. Soc. Apr 
8. [Epub ahead of print]. 

• Chemical & Engineering News,  88(16), April 19, 2010 summarizes the process 
chemistry implications of Friest et al., 2010, arising from the use of hyperthermophilic 
enzymes from thermoacidophilic microbes for asymmetric synthesis.  

• Miller PS, Blum PH. 2010. Extremophile-inspired strategies for enzymatic biomass 
saccharification. Environ Technol. 31(8-9):1005-15. 

3 - Relevance 
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4 - Critical Success Factors 

• Inquiries from cellulosic ethanol producers, grain ethanol producers, 
plant biotechnology companies, and enzyme producers 
 

• Primary Challenges are to integrate all aspects of the technology 
into a single system.  
 

• Technoeconomic analysis using ASPEN batch mode indicates 
savings at multiple stages of process development.  
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5. Future Work 

• Through project completion, will work on integrating 
aspects of project technology. 

• Refine technoeconomic implications. 
• Search for partners to achieve process scale.    
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PROJECT GO88055

TASK TOPIC

17 18 19 20

A.  Screening thermoacidophilic taxa.
A.1 Single taxa
A.1.1. Assessment of action
A.2 Community samples
A.2.1 Assessment of action
A.3 Community optimization 
A.3.1 Assessment of action
A.4 Post-secondary fermentation and ethanol yields

B.  Inhibitors
B.1 Detection of lignocellulose deconvolution inhibitors
B.2 Inhibitor intervention
B.2.1 Detection of furfural and hydroxymethal furfural
B.2.2 Inhibitor remediation
B.3 Post-secondary fermentation and ethanol yields

C. Sugar flux channeling and catabolic blocks. 
C.1 Assessment of hydrolytic products
C.2 Metabolic blocks for hexoses
C.2.1 Imposition of hexose blocks
C.2.2. Assessment of hexose block
C.3 Metabolic blocks for pentose
C.3.1 Imposition of pentose blocks
C.3.2 Assessment of pentose block
C.4 Post-secondary fermentation and ethanol yields

D.  Addition of deconvolution traits. 
D.1 Cellulases
D.1.1 Heterologous expression of cellulose-binding cellulases
D.1.2 Assessment on product formation
D.2 Xylanases
D.2.1 Induction of endogenous xylanases and assessment
D.2.2 Heterologous expression of xylanases and assessment
D.3 Post-secondary fermentation and ethanol yields

H. Bioenergy Facility

BUDGET YEAR 5

Gannt Chart 
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Summary 

 Consolidated bioprocessing with thermoacidophiles is 
possible and worth exploring further. 

 Primary technical accomplishments include converting an 
extremophile into an industrial organism. 

 Key relevance is the ability to achieve process 
simplifcation and cost reduction by integrating 
deconvolution and saccharification. This may also 
minimize costs associated with neutralization and water. 

 Future objectives are project Integration and scale up.  

 Technology transfer: IP available for licensing.  
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