This presentation does not contain any proprietary, confidential, or otherwise restricted information
Project Goals and Objectives

- Develop a cost effective route for converting biomass to transportation fuels by
 - Converting biomass to hydropyrolysis oil
 - Upgrading the hydropyrolysis oil in a petroleum refinery using existing refinery equipment
 - Working closely with a major petroleum refining company to develop the best integration
 - Developing a preliminary engineering design for a hydropyrolysis pilot and commercial scale facility to be located next to a Valero refinery
 - Developing an engineering design package for locating a hydropyrolysis unit converting cornstover at one of Valero’s 10 midwest corn ethanol plants
 - Comparing risk versus benefits from a refiners point of view for Integrated hydropyrolysis and hydroconversion (IH²) vs hydropyrolysis plus refinery upgrading

Selected from FOA DE-FOA-0000686 Bio-Oil Stabilization and Commoditization
Project Quad Chart Overview

Timeline
• Jan 2013
• April 2016
• 8.7% spent – project just started

Barriers
• Barriers addressed
 – Pyrolysis of Biomass and Bio-Oil Stabilization

Budget
• Total $4.1MM, $3.2MM DOE, $.88MM CS
• 2013 to date $356K, $280K DOE, $74K CS
• 3 years funding, $1.4MM/year

Partners & Roles
• GTI, CRI Catalyst, Valero, Johnson Timber, Cargill, MTU
Refinery Upgrading of Hydropyrolysis Oil

PROJECT TEAM

- GTI
 - Produce Hydropyrolysis Oil

- CRI- Catalyst
 - Upgrading Tests on Hydropyrolysis Oil

- Valero
 - Refining
 - Refinery Upgrading Analysis, Risk Analysis

- MTU
 - LCA

- Cargill
 - Cornstover Logistics

- Johnson
 - Timber
 - Wood Logistics

• Currently finalizing contracts with partners
U.S. Timber Production by County (2007)

Board feet per hectare

- Less than 0.2
- 0.6 - 1.0
- 1.1 - 1.6
- 1.7 - 2.3
- 2.4 - 3.3
- 3.4 - 4.9
- 5.0 - 10.9

Sources: WRI analysis on national timber production (Johnson et al., 2009), administrative boundaries (ESRI Data and Maps 9.3.1, ESRI, 2008).

▲ Valero Refineries
Adjacent Hydropyrolysis Integration With a Refinery

New Hydropyrolysis

- Best Integration system depends on Oil Refinery specifics-Hydropyrolysis products have low TAN’s and can be blended into Refinery streams – Capital cost could be <$50MM for 2000 t/d of biomass feed

Hydropyrolysis

- Hydrogen (H2)

biodiesel

H2

char

biodiesel

Hydropyrolysis

- Integration of H2 Plant

biodiesel

Hydropyrolysis

- Diesel to H2

biodiesel

Hydropyrolysis

- Gasoline to upgrading

biodiesel
Distributed Hydropyrolysis Sites Feeding an Existing Refinery

Multiple Hydropyrolysis Sites Integrated with Corn Ethanol Production

Hydropyrolysis products sent for further upgrading in existing refinery hydrotreaters
Advantages of Hydropyrolysis Oil versus Pyrolysis Oil

<table>
<thead>
<tr>
<th></th>
<th>Hydropyrolysis Oil from small batch tests</th>
<th>Pyrolysis Oil</th>
<th>Typical Partially Upgraded Pyrolysis Oil</th>
<th>Typical Catalytic Pyrolysis Oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Oxygen</td>
<td><3</td>
<td>50</td>
<td>8-10</td>
<td>6-10</td>
</tr>
<tr>
<td>% Water</td>
<td><0.5</td>
<td>20</td>
<td>2-3</td>
<td>2-3</td>
</tr>
<tr>
<td>Molecular weight</td>
<td>150-200</td>
<td>500-750</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>TAN</td>
<td><2</td>
<td>100</td>
<td>5-20</td>
<td>5-20</td>
</tr>
</tbody>
</table>

- A more upgraded bio-oil fits in refineries better and presents less risk
Integrated Hydropyrolysis and Hydroconversion (IH2)

- Directly make desired products
- Run all steps at moderate hydrogen pressure (200-500 psi)
- Utilize C$_1$-C$_3$ gas to make all hydrogen required
- Avoid making “bad stuff” made in pyrolysis – PNA, free radicals
Integrated Hydropyrolysis and Reformer System
Upgrading Hydropyrolysis Oil In a Refinery

<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FEEDSTOCK PROCUREMENT</td>
</tr>
<tr>
<td>2</td>
<td>Prepare Hydropyrolysis Oil</td>
</tr>
<tr>
<td>3</td>
<td>Restart Plant</td>
</tr>
<tr>
<td>4</td>
<td>Prepare 25 L of Hydropyrolysis Oil from wood</td>
</tr>
<tr>
<td>5</td>
<td>Prepare 25 L of Hydropyrolysis Oil from cornstover</td>
</tr>
<tr>
<td>6</td>
<td>Prepare 25 L of IH2 oil from wood</td>
</tr>
<tr>
<td>7</td>
<td>Prepare 25 L of IH2 oil from cornstover</td>
</tr>
<tr>
<td>8</td>
<td>HYDROPYROLYSIS OIL PREPARED</td>
</tr>
<tr>
<td>9</td>
<td>Fractionate diesel and Gasoline cuts</td>
</tr>
<tr>
<td>10</td>
<td>Hydrotreat oils</td>
</tr>
<tr>
<td>11</td>
<td>Hydrotreat diesel cut from Hydropyrolysis oil from wood</td>
</tr>
<tr>
<td>12</td>
<td>Hydrotreat diesel cut from hydropyrolysis oil from cornstover</td>
</tr>
<tr>
<td>13</td>
<td>Hydrotreat gasoline cut from hydropyrolysis oil from wood</td>
</tr>
<tr>
<td>14</td>
<td>Hydrotreat gasoline cut from hydropyrolysis oil from wood</td>
</tr>
<tr>
<td>15</td>
<td>Hydrotreat diesel cut for IH2 of wood</td>
</tr>
<tr>
<td>16</td>
<td>Hydrotreat diesel cut for IH2 of cornstover</td>
</tr>
<tr>
<td>17</td>
<td>HYDROTREATING COMPLETE</td>
</tr>
<tr>
<td>18</td>
<td>Refinery Integration Analysis</td>
</tr>
<tr>
<td>19</td>
<td>RISK ANALYSIS-OPTIMAL DESIGN REPORT</td>
</tr>
<tr>
<td>20</td>
<td>RIN ANALYSIS</td>
</tr>
<tr>
<td>21</td>
<td>Feedstock Supply Logistics</td>
</tr>
<tr>
<td>22</td>
<td>LCA Analysis</td>
</tr>
<tr>
<td>23</td>
<td>LCA REPORT COMPLETE</td>
</tr>
<tr>
<td>24</td>
<td>Engineering</td>
</tr>
<tr>
<td>25</td>
<td>ENGINEERING DESIGN PACKAGE</td>
</tr>
<tr>
<td>26</td>
<td>Technoeconomic Analysis</td>
</tr>
<tr>
<td>27</td>
<td>Project Management</td>
</tr>
<tr>
<td>28</td>
<td>Final report</td>
</tr>
<tr>
<td>29</td>
<td>FINAL REPORT COMPLETE</td>
</tr>
</tbody>
</table>

![Gantt chart showing project timeline and task dependencies](chart.png)
IH² 50 kg/d Continuous Pilot Plant

• Only Continuous IH² Pilot Plant in the world
Schematic Diagram of Continuous IH\(^2\) Process Unit

- 2 kg/hr of biomass feed
- Continuous char-catalyst separation
- Continuous operation
First stage Hydropyrolysis Liquids have smooth boiling point distribution and are primarily gasoline, jet, and diesel.

- Catalyst A
- Catalyst B
- Jet
- Gasoline
- Diesel

Hydropyrolysis Liquid Boiling Point Distribution
Cumulative Wt. % versus Boiling Temperature

0 10 20 30 40 50 60 70 80 90 100

0 100 200 300 400 500 600

• Temperature, °C

• Cum. Wt%
Average Molecular Weight of 1st Stage Hydropyrolysis Oil compared to Pyrolysis Oil

Molecular Wt of Pyrolysis Oil vs 1st Stage Hydropyrolysis Oil

MW

Aged Py Oil | Fresh Py Oil | HP Cat A | HP Cat B
Advantages of Hydropyrolysis vs Pyrolysis

- **H/C**
 - H/C goes up with hydropyrolysis, down with pyrolysis

- **EHI Effective Hydrogen Index**
 - EHI = (H - 2O - 3N - 2S)/C is a measure of coking, higher EHI = less coking
Conclusions and Future Work

> Project will look at refinery integration to minimize cost for biomass conversion to gasoline and diesel

> Goal is to work closely with Valero and develop the best possible process integration for refiners

> Project also enables study of hydropyrolysis step alone in IH² – very important for hydropyrolysis design

> Project enables continuous testing of hydropyrolysis and IH² for cornstover

> Will gather important comparison of risk for IH² versus hydropyrolysis from a refiners point of view

> Expect excellent LCA and economics of production (estimated <$2/gallon minimum selling cost)

> Remaining work to be done

> Project has just begun so bulk of work remains

> Hydropyrolysis Pilot plant testing to produce hydropyrolysis oil just beginning