2013 DOE Bioenergy Technologies Office (BETO) Project Peer Review

Demonstration of Pyrolysis Biorefinery Concept for Biopower, Biomaterials and Biochar

May 20, 2013 Bio-Oil Technology Area Review

Dennis S Banasiak, PhD Avello Bioenergy, Inc.

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Goals/Objective Statement

Project Goals:

- Design, Build and Operate 2.5 ton/day Integrated Pilot Plant
 - Wood and corn stover feedstocks
 - Make Products and Collect Engineering Data
 - Demonstrate continuous operation
- Pre-Commercial Testing of Products
 - Asphalt, Chemical, Fuel Oil, Transportation Fuels and Biochar Applications

Supports BETO Goals:

- Process integration and scale-up of novel Avello®FRAC fractionation technology, (Tt-E, Tt-I, Tt-K)
- Product demonstrations and R&D (including **Tt-G**)
 - Biofuel Oil™ combustion for power
 - Bioasphalt[®] for non-energy applications (petroleum replacement)
 - Feedstocks for specialty chemicals and advanced biofuels

Project Quad Chart Overview

Timeline

Project start date: TBD

• Project end date: 3 yrs. From start

• Percent complete: 0%

Budget

Total project funding: \$8,967,012

• DOE: \$2,500,000

Cost share: \$6,467,012

Funding received in FY 2011: \$0

Funding in FY 2012 (proposed)

• DOE: \$583k

Cost share: \$113.6k

Funding for FY 2013 (proposed)

• DOE: \$1.917M

• Cost share: \$2.53M

ARRA Funding - NO

Years the project has been funded & average annual funding -None

Barriers

- **Tt-E.** Liquefaction of Biomass and Bio-Oil Stability
- **Tt-K.** Bio-Oil Pathways Process Integration
- Tt-I. Sensors and Controls

Partners & Roles

- Avello Lead
- ConTech EPC
- Emerson Engineering support
- Borregaard Product R&D
- Cargill Biofuel Oil demo
- Leading roofing company Bioasphalt R&D
- Virent Biofuels R&D
- ISU Biomass and product R&D
- APAI, Iowa DOT, USDA Advisors

Project Overview

Biomass Prep and Handling

Pyrolysis and Fractionation

Bioproduct upgrading and testing

- Process integration of the entire process train including
 - Biomass pre-processing
 - Pyrolysis conversion and fractionation of Bio-oil
 - Bio-oil fraction use and upgrading as petroleum replacement products
 - Front-end and back-end storage/logistics
 - Bioasphalt production (not shown above)
- Main technical barriers
 - Tt-E. Liquefaction of Biomass and Bio-Oil Stability
 - Tt-K. Bio-Oil Pathways Process Integration

1 - Approach

- Leverage PDU data and experience for scale-up
- Leverage market leader expertise in product evaluation and development
- Project milestones, schedule, and risk mitigation via PMP
- 5 project tasks
- Phase reviews after subtasks
- Go/No-Go decision point after detailed engineering → Budget Period 2

2 - Technical Background and Planned Activities

- Current status of technology
- Project Overview
- Project Site
- Project Workflow
- Project RD&D

Avello™FRAC Technology Differentiation

Single Fraction

- Corrosive, poor properties
- Complex chemical mixture

Multiple Fractions

- Separate acids and water
- · Higher energy, less corrosive, more stable

Avello®FRAC Pilot Plant

Liquid Product Recovery

•Feed System

Reactor and Cyclones

Status of Technologies

Fractionation Technology

- 1/4 ton/day pilot plant
- > 525 hours operation
- Multiple feedstocks
 - Cornstover, Pine, Oak, Switchgrass
- Multiple 24hr/day continuous campaigns
- Strategic Partner sample evaluation

Bioasphalt® binder

- Developed by Dr. Chris Williams (ISU)
- Meets AASHTO specs
- October 2010, IDOT Demo in Polk County
 - 10' x 1 mile trail
 - 3% additive to petroleum asphalt binder
 - Standard blending and paving equipment

Biofuel Oil™ Combustion

~1 gal/hr EZ-1 residential burner with Econox inline nozzle heater from Carlin Combustion Technologies

- Fraction 3 tested as-is in conventional home heating burner by Brookhaven National Laboratory
- Acceptable performance and reduced emissions compared to ULSD

Property	Biofuel Oil ¹	Conventional Pyrolysis Oil ²	No. 2 Fuel Oil ²
Moisture content (wt%)	7	20 - 25	< 1.0
HHV (BTU/gal)	96,000	72,000 – 80,000	138,500

^{1.} From Red Oak feedstock. Properties shown for specific sample tested by Brookhaven National Laboratory in combustion application (May 2012).

^{2.} Easterly, James L. "Assessment of Bio-Oil as a Replacement for Heating Oil." 1 Nov. 2002. Web: http://www.nrbp.org/pdfs/pub34.pdf.

Project Overview/Partners

Avello Bioenergy Demonstration Plant Project Partners

BCRF Site

* Approximate size and location shown for lease area

Notice to Proceed

Project Workflow

Project RD&D

Feedstocks

- ISU ABE Dept., Matt Darr
- AGCO
- Single pass stover baling
- Switchgrass likely
- Harvest, Storage, Transport (HST)
- Pre-treatment
- Torrefaction?

Bioasphalt[®] binder

- ISU CCEE Dept., Chris Williams
- Performance testing & verifications
- Coordinate up to demo paving projects with IA
 DOT and APAI
- Roofing Company
- Roofing asphalt formulations
- Analysis, blending, modifying, performance testing

Biofuel Oil™

- ISU ME Dept., Terry Meyer & Song-C. Kong
- Goodrich Engine Components
- Coordinate up to 4 **John Deere <u>Power</u>** demo paving <u>Systems</u>
 - Non-transport biofuel blends
 - Combustion testing: furnace (heat) and stationary engine (power)
 - Emissions analysis
 - Cargill
 - Co-fire test burn
 - Renewable power & reduced CO₂ profile for biofuels

Chemicals

- Borregaard
 <u>LignoTech</u>
 Analysis,
 characterization,
 screening,
 modifying
- Specialty, high-value chemical applications

Biofuels

- Virent
- Feasibility study
- Bench and pilot scale testing
- Utilize BioForming to convert Biooil fractions to drop in fuels.
- Proof-of-concept completed

Biochar

- ISU ABE Dept., Matt Darr
- Post-production handling and processing
- Investigate densification methods

3 - Relevance

- Project focuses on petroleum replacement products (fuels, materials, chemicals) that reduce dependence on foreign oil
 - Seek to prove commercial feasibility (economic and technical) of products
 - Seek to demonstrate compatibility within existing infrastructure (fuel, transportation, chemical)
 - Remove water and acid from bio-oil for new downstream processing schemes
- Joint development with public and private partnerships to leverage expertise, cut cost
- Evaluate various biomass feedstocks to quantify risk (feedstock supply critical risk)
- Test high performance separation technology (conversion critical risk)
- Test biopower demonstration and deployment (demonstration and deployment risk)

4 - Critical Success Factors

- Critical success factors (managed using PMP):
 - Process Scale-up, product performance and compatibility with existing infrastructure (technical)
 - Market acceptance, product cost (market)
 - Project Management
- Top Challenges:
 - Process scale-up: uniting solid feedstock processing with liquid processing; using commercial equipment for bio-oil applications
 - Product/Markets: demonstration petroleum product replacement viability
- Successfully advancing technology:
 - Prove process scalability
 - Prove commercial end-use applications, market acceptance, compatibility

Future Work

Assumes July 1 kick-off

Summary

- Large integrated pilot scale plant and commercial product testing will build upon previous developmental scale work, refine economics and prepare for commercial scale up
- Public and private partnerships to leverage expertise, cut costs, increase probability of successful project
- Management team, advisors, and partnerships to manage critical success factors and solve/minimize challenges

Additional Slides

Avello Bioenergy Fast Pyrolysis Technology Platform

