2013 DOE Bioenergy Technologies Office (BETO) Project Peer Review

Long Term Processing using Integrated Hydropyrolysis plus Hydroconversion (IH²) for Production of Gasoline and Diesel from Biomass

May 23, 2012 Bio-Oil Technology Area Review

> Terry Marker GTI

Big Picture Goals and Objectives

- Demonstrate a new game changing technology, IH², in a continuous pilot plant which
 - Solves the current technical and economic issues for biomass conversion to fungible fuel
 - Directly makes high quality fungible hydrocarbon fuels from biomass
 - Works for all biomass feeds tested
 - Integrates nicely with existing forest product or agricultural residue processing
 - Projected < \$2.00/gallon product cost (2000t/d)
 - 80 gal/ton gasoline + diesel product yield from wood
 - Environmental sustainability = Extremely good (more than 90% greenhouse gas reduction)

Project Goal/Objective Statement

- Demonstrate continuous testing of the IH² process in a 50kg/d Pilot Plant
- Show Catalyst Stability
- Produce Gasoline and Diesel fuels directly from biomass containing less than 1% oxygen that can be blended into petroleum fuels or further upgraded in a petroleum refinery
- Provide detailed characterization of gasoline and diesel fuels produced
- Produce Yield and Material Balances for the IH2 Products

Awarded from FOA DE-FOA-0000342 Upgrading of Biomass Fast Pyrolysis Oil (Bio-oil)

Project Quad Chart Overview

Timeline

- Aug 2011
- May 2013
- 99.9% final report will issue shortly

Budget

- Total \$3.8MM, \$2.9MM DOE,\$.97MM CS
- 2011 \$1.7MM, \$1.16MM DOE.\$.51MM CS
- 2012 \$2.1MM. \$1.66MM FOE,\$.45 MM CS
- 2013 \$72K, \$63K DOE, \$9K CS
- 3 years funding,\$1.2MM/year

Barriers

- Barriers addressed
 - Pyrolysis of Biomass and Bio-Oil Stabilization

Partners & Roles

 GTI,CRI Catalyst, Shell Global Solutions, Johnson Timber, Cargill, Parabel

Long Term Processing Using IH²

Project Partners are GTI, CRI Catalyst, Shell Global Solutions, Cargill, Johnson Timber, Parabel

Integrated Hydropyrolysis and Hydroconversion (IH²)

- Directly make desired products
- Run all steps at moderate hydrogen pressure (200-500 psi)
- Utilize C₁-C₃ gas to make all hydrogen required
- Avoid making "bad stuff" made in pyrolysis PNA, free radicals

IH² 50 kg/d Continuous Pilot Plant

Only Continuous IH² Pilot Plant in the world

Schematic Diagram of Continuous IH² Process Unit

- 2 kg/hr of biomass feed
- Continuous char-catalyst separation
- Continuous operation

Long Term Processing using IH² Accomplishments

Continuous Testing in IH2-50 50kg/d Pilot Plant

- ✓ Demonstrate Long term Operability 750 Hours on Stream (HOS)
- Show Catalyst Stability Good Stability
- Produce Gasoline and Diesel fuels containing less than 1% oxygen -High quality drop in gasoline,
- Detailed characterization of gasoline and diesel fuels produced Lots of detailed data
- Yield and Material balances of IH2 Products daily yields and material balances
 - •Project Complete except Final Report under review should issue shortly.

Comparison of Lab & Pilot Yields

•Yields in wt% of biomass feed (wood) on a moisture and ash free basis

	Lab	Pilot
Gasoline + Diesel	26	27
char +ash	13	15
water	36	37
CO+CO ₂	17	12
C1-C3	13	14
TOTAL*	105	105

^{*} Total greater than 100% due to hydrogen uptake

Continuous Pilot Plant Yields and Quality

Wt %Water Produced vs Hours on Stream

Wt% Light Ends vs Hours on Stream

Wt % C1+C2+C3 Hydrocarbons vs Hours on Stream

% Oxygen in Hydrocarbon Product Below Detection Limit

TAN vs Hours on Stream

IH2 Product Simulated Distillation (from Wood)

•70% gasoline,30% diesel

Liquid Products Collected from Recent Continuous IH²-50 Testing with Wood

Gasoline-Range Hydrocarbons

Diesel/Jet-Range Hydrocarbons

Aqueous Product

Liquid Product Quality Excellent from both pilot plant units

	Semi continuous	Continuous
	The state of the s	Gasoline + Diesel
%C	88.40	88.20
%H	11.00	11.60
%S	0.02	0.02
%N	<0.1	<0.1
%O	<0.5 (BDL)	<0.5 (BDL)
TAN	<1	<1

•100% gasoline + diesel

IH² Pilot Plant Gasoline Cut v ASTM D-4814-10b

Spec Name	ASTM D 4814-10b	Test Method Used	IH ² Gasoline Hydrocarbon
Property			·
*Antiknock index (MON+RON)/2, calculated, min			86.2
Sulfur, ppm, max	80	ASTM D 5453	40
RVP @ 37.8°C (100°F), kPa, max	103	ASTM D 5191	67.4
Distillation		ASTM D 86	
IBP, °C, max			33.6
T10, °C, max	70		50.9
T30, °C, max			67.6
T50, °C, max	121		88.7
T90, °C, max	190		172.9
FBP, °C, max	225		195.1
Residue, vol%, max	2		1
Oxidation stability (Induction			
period), minutes, min	240	ASTM D 525	960+
Copper corrosion, 3hr @ 50°C, merit (class)	1	ASTM D 130	2A

[•]High quality gasoline – almost 100% drop in gasoline

IH² Pilot Plant Diesel Cut v ASTM D-975-11

Spec Name	No.2-D S15	Test Method Used	Pilot Plant Wood Based
Cetane index, min	40	ASTM D 976	27
Sulfur, ppm, max	15	ASTM D 5453	9.1
Viscosity @ 40°C, cSt, max	4.1	ASTM D 445	7.61
Distillation			
T90, °C, max	338	ASTM D 86	340.6
Flash Point, °C, min	52	ASTM D 93	156.1
Carbon residue 10%, wt%, max	0.35	ASTM D 524	0.25
Water and sediment, vol%, max	0.05	ASTM D 2709	<0.005
Ash, wt%, max	0.01	ASTM D 482	<0.001
Lubricity, diam @ 60°C, micron,			
max	520	ASTM D 6079	330
Copper corrosion, 3hr @ 50°C,			
max	No. 3	ASTM D 130	1A

LCO like Diesel from wood, but CRI Catalyst has shown mild upgrading produces diesel product meeting 40 cetane spec

%C in Water vs Hours on Stream

Carbon Content of Water vs Oxygen Content of Oil

Comparison of Greenhouse Gas Reduction- by Technology

Economic Comparison

•FCOP +ROI - \$/gal

Based on 2000 t/d of biomass feed

Conclusions and Future Work

- > IH² is a Game Changing Biomass Conversion Process
 - Produce valuable fuel products directly from biomass feedstocks
 - > Self-sufficiency produces fuels with excellent life cycle carbon benefits (>90% lower than fossil fuels)
 - > Excellent economics of production (estimated <\$2/gallon minimum selling cost)</p>
- > Remaining work to be done in future projects
 - > More continuous testing studies, using additional feeds,
 - > Larger size feeds must be tested next
 - > Fundamental studies/modeling needed for hydropyrolysis reactor design
 - > Scale up larger demonstrations

Backup slides

Continuous Pilot Plant Yields and Quality

Wt% Liquid Yield vs Hours on Stream

MBU Test Results: IH² Liquid Yields and Feedstock Flexibility

	Wood	Lemna	Aquaflow Micro Algae	Bagasse	Blue Marble Macro Algae	Corn Stover
Feed % C	49.7	46.3	43.1	43.1	34.0	40.2
Feed %H	5.8	5.8	6.1	5.0	4.43	5.0
Feed %O	43.9	35.7	20.4	35.3	23.6	35.7
Feed %N	0.11	3.7	6.5	.34	4.6	1.0
Feed %S	0.03	0.3	0.7	.10	1.9	0.05
Feed % Ash	0.5	8.2	23.1	16.2	29.4	18.1
Feed H/C	1.40	1.50	1.70	1.39	1.56	1.49
Typical % C ₄ + Liquid Yield (MAF)	25-28	30	46	30	35	21
C ₄ + Gallon/Ton MAF	82	100	157	100	119	67
% Oxygen	(BDL)	(BDL)	(BDL)	(BDL)	(BDL)	(BDL)
TAN#	<1	<1	<1	<1	<1	<1