Date: May 21st 2013
Technology Area Review: Analysis & Sust.
Principal Investigator: Paul N. Leiby
Co-Investigators: Rocio Uria-Martinez and Maxwell Brown
Organization: Oak Ridge National Laboratory
Biofuels National Strategic Benefit Analysis: Goals Statement

Advance DOE capability for strategic analysis and benefits assessment with modeling and analyses, to:

- “enable sustainable nationwide production of [commercially viable] advanced biofuels to … reduce U.S. dependence on oil … supporting the EISA goal(s)” (MYPP 2012:1)

- “understand and promote positive economic, social, environmental effects of biofuels” (MYPP Apr. 2012:2-99)

by:

- **Estimating comparative benefits** of alternative configurations of the US biofuel system, including economic impacts, *resilience to shocks and energy security*

- **Assessing alternative policies** to achieve EISA and drive the transition to commercially viable advanced biofuels
Quad Chart Overview

Timeline
- Project start date: 12/15/2011
- Project end date: 9/30/2015
- Percent complete: 35%

Budget
- FY11 DOE funding: $0k
- FY12 DOE funding: $200k
- FY13 DOE funding: $300k
- Years funded: 1.5
- Avg. annual funding: $250k

Partners
- Ceres/Exelus
- Mansfield Oil
- ORNL GTAP, BILT and KDF teams
- Univ. of Maine

Barriers being addressed
- At-B. Limitations of **analytical tools** and capabilities **for system-level analysis** (for Strategic analysis of mkt barriers & benefits)
- At-A. Lack of Comparable, Transparent, and **Reproducible Analysis**.
- Ct-C. Inconsistent and **Unpredictable Policy Landscape** and Priorities

Project Management
- Monthly & Quarterly reports, program conf. calls.
- Assembla Project Management Workspace.
- SVN version control for source code.
Project Overview

• History:
 – Past transitional analysis work (e.g. TAFV, HyTrans, NAS models) viewed as insightful for other EERE alt fuel tech programs.

• Context:
 – Large changes in oil price, and feedstock prices; Deployment barriers; Boom/bust cycle in dry mill investment; Delayed biofuel.

• High level objectives of the project.
 – Evaluating biofuel policies/industry strategically, emphasis on national economic benefits & energy security (a central EISA goal)
 – Model/assess barriers and transitions

• Ask, for example:
 – How do we configure biofuels to promote resilience and security at acceptable cost?
 – How can barriers be passed?
1 – Approach

1. Math-programming economic market model (BioTrans)
 - depicts supply-demand landscape for biofuels, for market transition analysis
 - Classical economic model imposes market discipline on outcomes
 - National, long-term strategic focus (dynamic across 20 years)
 - Representative portfolio of biofuel pathways compete (w/ each other & petroleum)
 - Emphasis on role of flexibility levers throughout the system

2. Parallel econometric analyses
 - of monthly ethanol and gasoline market data to flesh out the relationship between these two fuels and prices

3. Steady attention to economic/energy security implications
Progress: On Track towards FY13 Milestones Completion

FY2013:

<table>
<thead>
<tr>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
</tr>
</thead>
</table>

Transition Analysis to Achieve EISA Goals, Promote Economic and Energy Security

- **Biotrans V1 Model Complete**
- **Note on feasibility and costs of attaining RFS-2 targets**
- **Evaluation of alternative biofuel system configurations under shocks**
- **Report on key barriers and cost-effective approaches to RFS-2 attainment**

Econometric Analysis of Effects of Biofuels on Gasoline Prices Levels and Volatility

- **Summary of literature, proposed methodology and initial results**
- **Paper submission**

Biofuels Energy Security Analysis

- **Report describing Security Premium methodology and estimated values**
- **KDF online energy security premium calculator**
2 - Progress: Completed *BioTrans* Stage 1 Model Development

- National scope, 20+ years
- Regional disaggregation at census-division level
- Includes representative set of feedstocks and conversion processes, logistics, fuel retail, and fuel choice
- Focuses on the competition with gasoline and diesel in the light duty vehicle fuel market
BioTrans Builds on Existing Capabilities and Has Linkages to Multiple BETO Efforts

BILLION TON STUDY
Used for constructing regional supply curves of biomass feedstocks

BLM
Modeling framework to simulate biomass supply logistics from the field to biorefinery

NREL Process Design Reports and Theoretical Yield Calculator
White Papers on Biochemical and Thermochemical Biorefinery Sizing

Transitional Alternative Fuel & Vehicle, HyTrans
ORNL Dynamic market optimization to balance motor fuel supply to demand

GTAP (task 11.2.3.1)
Biofuels imports and exports

BIOTRANS-Long-Run Model
- Integrates summary representations from each of above
- Balances markets and determines fixed capital

BIOTRANS Stochastic Short-Run Simulations
- Simulate monthly over 1 year
- Shocks from oil producer behavior, disruptions and accidents
- Shocks to yields from weather events: droughts, floods, pests
- Infrastructure reliability

Oil Security Metrics Model (to be included in KDF)
- Provide framework for quantifying and measuring energy and economic security impacts

Annual Energy Outlook
Data on fuel demand, oil prices

Other Measures of Sustainability:
- Long run economic costs
- GHG Emission Coefficients (GREET)
- Water Quality model (SWAT)
2 - Progress: Completed Note on Feasibility and Costs of Various Levels of RFS-2 Achievement*

*Note: 2022 RFS2 cellulosic target is 16 billion gallons

Reference Conditions:
- Grower payments $50/dry ton
- Biomass densification starting in 2017
- No drop-in biofuels
- Cellulosic ethanol \(n^{th} \) plant costs reached in 2017
- AEO2012 reference case oil prices
- Window for RIN banking and borrowing
- Current expiration dates for biofuel policy incentives

Key Barriers:
- E10 “blend wall”
- FFV stock size
- Retail infrastructure introduction rate
- Inconvenience cost of E85 refueling
- Biorefinery investment rate limits
Results: Retail Infrastructure Investment is Modest in Comparison to Biorefinery Investment, but risk may deter it.

Simulated cumulative investment expenditure for various levels of RFS-2 attainment

- Full achievement
- AEO2012 achievement
- Technological progress without RFS-2

2017

2022

Cumulative retail investment
Cumulative biorefinery investment
2 – Results: Even in Absence of Risk, Biorefinery Investment Levels Required for RFS-2 Compliance with ethanol are Difficult to Attain

Simulated biorefinery investment timing (solid lines) compared to:
• timing implied by RFS-2 annual mandate increments (dashed lines)
• peak historical annual dry mill capacity addition
2 – Results: An idealized transition to E15 aides in addressing the “blend wall” but has two side effects: reduction in E85 usage and increase in total fuel consumption

Idealized Assumptions:
• No changes required in retail infrastructure
• Decision between consumption of E10 and E15 is based exclusively on relative prices

E85 USE BY FFVs

Biofuel and Total Fuel Use

<table>
<thead>
<tr>
<th></th>
<th>Gasoline Sector</th>
<th></th>
<th>Diesel Sector</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average biofuel</td>
<td>Total demand</td>
<td>Average biofuel</td>
<td>Total demand</td>
</tr>
<tr>
<td></td>
<td>content (%)</td>
<td>Billion gges</td>
<td>content (%)</td>
<td>Billion gges</td>
</tr>
<tr>
<td>Reference conditions</td>
<td>11.4%</td>
<td>127.7</td>
<td>2.8%</td>
<td>64.7</td>
</tr>
<tr>
<td>Drop-in biofuels</td>
<td>13.5%</td>
<td>126.9</td>
<td>4.9%</td>
<td>64.0</td>
</tr>
<tr>
<td>Increased FFV sales</td>
<td>12.2%</td>
<td>127.8</td>
<td>2.8%</td>
<td>64.7</td>
</tr>
<tr>
<td>Idealized E15</td>
<td>14.0%</td>
<td>128.2</td>
<td>2.8%</td>
<td>64.7</td>
</tr>
</tbody>
</table>
Task 2: Analysis of the Effect of Biofuels on Gasoline Price Levels and Volatility

• Relevance: Biofuels *economic* benefits depend on their *fuel market impacts* (products and crude):
 - fuel price levels (costs/benefits)
 - price stability (energy security – another topic)

• Context: controversial papers suggested ethanol production had very large gasoline price reduction effect
 - Need for careful reconsideration, to support DOE analysis

• Approach:
 - Empirical - statistical analysis of multiple monthly time series
 - Conceptual - identify possible channels for ethanol production to affect gasoline price
Task 2: Analysis of the Effect of Biofuels on Gasoline Price – Results

- Replicated Du and Hayes (2012)
 - Extended time range, tested alternative specifications, identified issues

- Applied two **improved time series methods**
 - VAR and VECM with corrections for nonstationarity
 - These methods provide much more modest, but more defensible, estimates of ethanol price impact.
 - Effects vary by region and time, indistinguishable from zero in many, but support modest (~10c/gal) in some regions

- Paper in draft to be revised and submitted for publication in Q3
Task 3: Developing Biofuels Energy Security Premium Calculator for KDF (Initiated, Qtr 3-4 activity)

- Case if No Elasticity Gains
- Case with Demand Elasticity Gains
Task 3: Developing Biofuels Energy Security Premium Calculator for KDF

• Motivation:
 • To refine and publicize (through KDF) simple summary measure ($/gallon) of biofuels security benefits

• Approach:
 • Developing and implementing a U.S. Energy Security Premium calculation specific to biofuels
 - Oil premium method developed, peer-reviewed by panel commissioned by EPA
 • Adding a new feature to KDF by posting the Biofuels Security Premium estimation
 - Some capability for user interaction, revising certain market conditions/assumptions

• Progress:
 Methodology revision outlined, implementation path devised.
3 – Relevance

- **Identifying barriers to market deployment** of biofuel pathways is a key for the success of BETO’s Biomass Program
 - Explore strategies to address barriers to BETO-sponsored technologies near commercial viability

- **Private companies involved in biofuels R&D** (e.g. Ceres, Exelus) are interested in insights from our **transitional model approach**.

- **Our modeling approach can be used to validate the economic viability** of biofuel production pathways against other biofuels

- **Energy Security is a central goal** for biofuels
 - but biofuels systems configurations differ, and should be carefully assessed and designed to assure they enhance security
4 - Critical Success Factors

• Establish **effective model scale and scope**
 – Configure BioTrans to be well-suited for exploring costs and benefits of national bioenergy policies (both in the long-run and during shorter-run shocks)

• In transitional analysis, **capture the crucial dimensions of infrastructure compatibility, capital constraints, and market choice**

• BioTrans modeling **approach complements and builds on others**
 – Economic theory provides a framework for consistent behavior by firms and consumers, and assessing potential market outcomes
 – Incorporates latest information on technical status, barriers, and markets

• **Testing, benchmarking and parameter validation**
 – Our empirical analysis of observed behavior and market outcomes supports parameter validation (e.g., for price transmission from ethanol to gasoline)

• **Provide value by consistent focus on understanding the market effects and energy security value of biofuels, at national level**
5. Future Work

- **(A) Extensions/Application of BioTrans**
 - Improved representation of extended blends use and drop-in fuel introduction
 - Including risk and limited foresight for investors (Interactions with shocks)
 - Enhanced fuel/vehicle choice characterization

- **(B) Advanced benefits analysis**
 - Short/long run disruption simulation capability for biomass and oil supply/demand shocks
 - Environmental and security benefits quantification

- **(C) Combined empirical analysis of oil and biofuel markets**
 - Estimation of price impact of U.S. biofuel, gasoline, crude oil. RINs, E85, mid-blends.
 - Estimate biofuel impacts on price stability/volatility, demand.

- **(D) Collaborations with other BETO teams (BSM; BLM; ORNL’s Resource Analysis; Global Modeling and Land Use; KDF team) and universities**
 - On sharing data/methods
 - On biofuel strategic and transition analysis
Summary

- **Approach**
 - Combining optimization and econometric analysis tools to examine scenarios about the future and analyzing observed market outcomes

- **Technical accomplishments**
 - Completed BioTrans V1 model development and preliminary results on RFS-2 attainment
 - Initial estimates of effect of ethanol on gasoline price levels

- **Relevance**
 - Identifies market barriers to advanced biofuel deployment and explores strategies for addressing them and establishing benefits

- **Critical Success Factors**
 - Capturing central issues for market effects and transition to alternative fuels: infrastructure compatibility, capital constraints and fuel/vehicle choice

- **Future Work**
 - Refining model specification, applying, for informative accounting of costs and benefits

- **Technology Transfer/Outreach**
 - KDF public deployment of Security Premium Calculator with user-interactive features
Additional Slides
Project Milestones and Deliverables

<table>
<thead>
<tr>
<th>Task(s)</th>
<th>Milestone</th>
<th>Due date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2.3.5.1.DL1</td>
<td>Short initial note reporting comparison of costs and feasibility of attaining 2017 EISA/RFS2 goals (and 2022 goal) under alternative system configurations. Seek to identify barriers.</td>
<td>3/30/2013</td>
<td>Complete</td>
</tr>
<tr>
<td>11.2.3.5.1.DL2</td>
<td>Evaluation of performance of alternative biofuel system configurations under shocks to feedstock supply or to the price of outputs (biofuel or co-products) and competing petroleum-based fuels.</td>
<td>6/30/2013</td>
<td>60% complete</td>
</tr>
<tr>
<td>11.2.3.5.1.DL3</td>
<td>Final report on key barriers and cost-effective approaches to achieve EISA goals nationally</td>
<td>9/30/2013</td>
<td>40% complete</td>
</tr>
<tr>
<td>11.2.3.5.2.DL1</td>
<td>Draft summary of literature, proposed methodology and initial empirical results</td>
<td>3/30/2013</td>
<td>90% complete</td>
</tr>
<tr>
<td>11.2.3.5.2.DL2</td>
<td>Paper on “Effect of Biofuels on Gasoline Price Levels and Volatility” submitted to peer-reviewed journal</td>
<td>6/30/2013</td>
<td>60% complete</td>
</tr>
<tr>
<td>11.2.3.5.3.DL1</td>
<td>Report describing the Biofuels Energy Security Premium and estimated values.</td>
<td>6/30/2013</td>
<td>30% complete</td>
</tr>
<tr>
<td>11.2.3.5.3.DL2</td>
<td>KDF on-line Calculator for Biofuels Energy Security Premium</td>
<td>9/30/2013</td>
<td>10% complete</td>
</tr>
</tbody>
</table>
Publications, Presentations, and Commercialization

Reports

Conference Papers

Presentations

2 – Progress: On Track towards FY13 Milestones Completion

Tasks

- Transition analysis to achieve EISA goals, promote economic and energy security
- Econometric analysis of effects of biofuels on gasoline price levels and volatility
- Biofuels Energy Security Analysis

Milestones

- **BioTrans V1. model complete.**
 - FY13Q2
- **Note on feasibility and costs of attaining RFS-2 targets.**
 - FY13Q3
- **Evaluation of alternative biofuel system configurations under shocks.**
 - FY13Q4
- **Report on key barriers and cost-effective approaches to RFS-2 attainment.**
 - FY13Q4
- **Summary of literature, proposed methodology and initial results.**
 - FY13Q4
- **Paper submission.**
 - FY13Q4
- **Report describing Security Premium methodology and estimated values.**
 - FY13Q4
- **KDF on-line ES Premium calculator.**
 - FY13Q4
Acronyms

- BILT Model: Biomass Infrastructure and Logistics Transport model
- BLM Model: Biomass Logistics Model
- EISA: Energy Independence and Security Act
- GTAP Model: Global Trade Analysis Project
- GREET: Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model
- HyTrans Model: Hydrogen Transition Model
- KDF: Knowledge Discovery Framework
- ORNL: Oak Ridge National Laboratory
- SVN: SubVersion code version control system
- SWAT: Soil and Water Assessment Tool
- TAFV Model: Transitional Alternative Fuels and Vehicles Model
- VECM: Vector Error Correction Model
- VAR: Vector Auto Regression