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Goal Statement
• Improve the sustainability of algae biofuels by developing and 

demonstrating efficient recycling of water, nutrients, & some carbon.
With t i ifi t l i lt t bilit d d ti it hi t• Without significant loss in culture stability and productivity, achieve at 
least 75% recycle efficiency of:

– The water recovered after harvesting the biomass
– The nutrients added (N, P, K and minor nutrients)

• Water and nutrient recycle rates of up to 90% will be tested.



Quad Chart Overview
Timeline Barriers

• Started February 2013
• Ends February 2016
• 5% complete

• Ft-N  Algal Feedstock 
Processing

– Recovery and recycling of 5% complete
nutrients and water

Budget Partners
• Total:  $1,678,070

– DOE share: $1,306,070 
– Contractor share: $372,000 

• Cal Poly
• City of San Luis Obispo
• MicroBio Engineering Inc$ ,

• DOE Funding FY13:  $290,237
• ARRA Funding:  None

MicroBio Engineering, Inc.
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Cal Poly is also an ATP3 siteCal Poly is also an ATP site

Secondary 
Clarifier

Primary Clarifier



Cal Poly has access to….
Seawater at 
Cal Poly Pier

3-acre raceways y
with settling basins 

& drying beds

Animal wastewaters (dairy, swine, poultry)

Research feed mill



Nutrient 
transformations

to be studied
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TEA & LCA models to be updated
Basis will be Realistic Assessment report Lundquist Woertz• Basis will be Realistic Assessment report, Lundquist, Woertz, 
Benemann et al. 2010

– Similarly based on 1980s – 1990s reports of Benemann, Weissman, et al.

• Participated in Harmonization effort (ongoing:  informal and via ATP3)

400 h f400-ha farm
90% earth-lined
$100k/acre, all components



Nutrient and water recycling is assumed in 
2010 TEA. Now we test the assumptions.2010 TEA.  Now we test the assumptions.

System Goal Break-even without 
WWT credit

Break-even with
WWT credit

Treatment (100 ha) -- $28 /bbl
Oil (400 ha) $300 /bbl $240 /bbl

Treatment revenue lowers cost to $28/bbl butTreatment revenue lowers cost to $28/bbl, but 
national scale would be small.

“<$200/bbl possible with great R&D success for the 
non-treatment cases.”

8



First co-product commercialized is reclaimed 
water — An early win on road to biofuelwater — An early win on road to biofuel.  
Algae wastewater treatment is low cost and energy efficient.  
Builds algae capacity.  But nutrient removal unproven.
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Project Overview
• Cal Poly operates an algae production pilot facility at a municipal 

wastewater treatment plant.  Nine raceways @ 33 m2 (10 m3).p y @ ( )
• Nutrients and carbon will be re-solubilized using anaerobic digestion, 

with digestate fed to the raceways.
Recycled water will be monitored for build up of inhibitory compounds• Recycled water will be monitored for build-up of inhibitory compounds 
and removal methods tested. 

• Model recycling:  processes, lifecycle, techno-economics.  

Secondary 
Clarifier
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1 – Approach [Milestones]
• Lab studies will establish the methods and initial modeling [Select a 

scalable cell lysing method; Determine biomass degradation parameters; 
Characterize inhibitory compounds from algae production]Characterize inhibitory compounds from algae production].

• Pilot experiments will each be operated continuously over several 
months, in replicate and with controls.  Cells will be lysed prior to 
digestion. [Measure productivity with 50% and 75% recycling of water or 
nutrients; Determine degradation parameters; Characterize inhibitory 
compounds].p ]

• Algal biomass will be harvested by bioflocculation, with centrifugation as 
needed [95% harvesting efficiency achieved].  
G N G t d f Y 2 W il t l t f d• Go–No Go at end of Year 2:  Was pilot plant performance measured 
with separate nutrient and water recycling, compared to controls?  
If yes:  Proceed with integrated nutrient & water recycling pilot 
studies.

• Up to 90% water recycling will be tested [Measure productivity; 
Characterize inhibitory compounds]Characterize inhibitory compounds].

• Lifecycle and cost assessment studies based on pilot data.



Approach to 
Statistical Uncertainty

Triplicate ponds (NO3 example)

Statistical Uncertainty
Lab growth trials (examples)

72-hr incubation:  Compare average specific growth rate & yield.



2 – Technical Progress
Personnel
• Trained technicians, graduate students, and undergraduates.
Instruments and Equipment
• Newly selected and installed:  accelerated solvent extractor, freeze 

dryer GC-MS/FID biogas GC light incubator and field centrifugedryer, GC MS/FID, biogas GC, light incubator, and field centrifuge.  
Lab Studies
• Conducted initial test on nutrient release/transformation from algae 

during dark aerobic incubation (simulating solids decay in a pond).
• Conducted two lab algae culturing batches for training and setup.
• Conducted initial lab sonication study measuring the increase of• Conducted initial lab sonication study measuring the increase of 

soluble chemical oxygen demand concentration. 
Pilot Plant Operation
• Operating and sampling the nine 33-m2 raceway ponds on weekly 

basis to obtain baseline performance and precision data.
• Testing a new rack design for the probes and effluent tubing to
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• Testing a new rack design for the probes and effluent tubing to 
avoid fouling by filamentous algae.  



2 - Technical Progress (cont’d)
• Aerobic solubilization of algal biomass and transformation of nitrogen
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2 – Technical Results (cont’d)
• A key question is effect of recycling on simple bioflocculation 

harvesting process

Primary Clarifier Raceway Pond Tube Settler
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3 - Relevance
BETO Multi-Year Program Plan topics addressed:
• R.9.2 Sustainability
• R 9 2 1 Pathway & Cross Pathway Analysis• R.9.2.1 Pathway & Cross-Pathway Analysis
• R.9.2.1.1.8  Environmental - Algae
• R.9.2.1.3.8 Systemic Sustainability – Algae
• R.9.2.2 Sustainability Standards & Adoption

16Fishman, DOE, 2012



4 - Critical Success Factors

• We are attempting to demonstrate key technical and 
sustainability aspects of a common model of algae 
biofuel production.

• Technical Challenges 
– Achieving at least 75% water and nutrient recycling 

capabilitycapability.
– Achieving rapid and extensive degradation of cell matter in 

digesters and raceway ponds to release nutrients.
– Overcoming inhibitors (free fatty acids, turbidity, etc.) with 

low cost methods.
Maintaining low cost bioflocculation harvesting during– Maintaining low-cost bioflocculation harvesting during 
recycling.

– Variability among replicate pondsy g p p



5. Future Work
Laboratory Studies – Water Recycling
• Optimize separately biomass and lipid productivity by mono-

d l ltand poly-cultures.
• Determine extent of productivity inhibition due to repeated 

water recycling.
Attempt to identify inhibitory compounds or deficient nutrients• Attempt to identify inhibitory compounds or deficient nutrients.

• Attempt to rectify drags on productivity with cost-effective and 
sustainable methods.

Laboratory Studies – Nutrient Recycling
• Determine aerobic and anaerobic nutrient (macro and micro) 

and carbon re solubilization kinetics and ultimate extent forand carbon re-solubilization kinetics and ultimate extent for 
various pre-treatments.

• Determine biogas methane productivity for biomass & 
pretreatmentspretreatments.

• Determine re-growth kinetics on recycled nutrients and carbon.
• Measure influence of recycled water and media on 

bioflocculation
18

bioflocculation.



5. Future Work
Field Studies – Water Recycling
• Demonstrate high biomass and lipid productivity by mono-

and/or poly-cultures.
• Confirm extent of productivity inhibition due to repeated water 

recycling.
• Confirm identity of inhibitory compounds & deficient nutrients.
• Implement any needed and appropriate methods to decrease 

inhibition due to recycling.

Field Studies – Nutrient Recycling
• Confirm aerobic and anaerobic nutrient and carbon re-

solubilization kinetics and ultimate extent for most practical 
t t tpre-treatment.

• Confirm biogas methane productivity for biomass.
• Confirm re-growth kinetics on recycled nutrients and carbon.
• Confirm influence of recycled water and media on 

bioflocculation
• Demonstrate water and nutrient recycling independently and in 

integrated s stem
19

integrated system.



SummarySummary
• Some key elements of sustainable algae biofuelSome key elements of sustainable algae biofuel 

production are the following:
– Efficient recycling of water, nutrients, and carbon
– Low-cost, low-input biofloccuation and sedimentation harvesting
– Renewable electricity production from biogas to offset other 

GHG-generating inputs to the overall algae biofuel processGHG generating inputs to the overall algae biofuel process.

• We will generate basic information and model parameter 
values and demonstrate integrated cultivation recycling g y g
in lab.

• We will attempt to recreate and confirm lab results in the 
pilot facility.

• LCA and TEA analyses will be updated based on the 

20
results.
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N & P are mostly assimilated in algae biomass, 
allowing nutrient recyclingallowing nutrient recycling.

Raceway Pond 2o Clarifier
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Capital costs were dominated by pond 
construction (clay lined).( y )

100 ha, Oil+Biogas:  Total capital = $31 million

Municipal 
engineering costs 

CO2 Delivery 

Algae Digesters 
5%

g g
would be six-times 

higher 

System 
9% High Rate Pond

47%
Land
9%

47%

Solvent 
Extraction 

13%
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