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* Improve the sustainability of algae biofuels by developing and
demonstrating efficient recycling of water, nutrients, & some carbon.

Without significant loss in culture stability and productivity, achieve at

least 75% recycle efficiency of:
The water recovered after harvesting the biomass

— The nutrients added (N, P, K and minor nutrients)
« Water and nutrient recycle rates of up to 90% will be tested.
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Timeline

o Started February 2013
 Ends February 2016
5% complete

Budget

« Total: $1,678,070
— DOE share: $1,306,070
— Contractor share: $372,000

« DOE Funding FY13: $290,237
« ARRA Funding: None

Barriers

Ft-N Algal Feedstock
Processing

— Recovery and recycling of
nutrients and water

Parthers

Cal Poly
City of San Luis Obispo
MicroBio Engineering, Inc.




/\;lg-l?md Cal Poly is also an ATP? site

Public-Private Partnership
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Seawater at
Cal Poly Pier

3-acre raceways
with settling basins
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to be studied
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TEA & LCA models to be updated

 Basis will be Realistic Assessment report, Lundquist, Woertz,
Benemann et al. 2010

— Similarly based on 1980s — 1990s reports of Benemann, Weissman, et al.
Participated in Harmonization effort (ongoing: informal and via ATP?3)

400-ha farm
90% earth-lined . .

$100k/acre,all-components
s



2010 TEA. Now we test the assumptions.

Svstem Goal Break-even without Break-even with
y WWT credit WWT credit
Treatment (100 ha) -- $28 /bbl
Oil (400 ha) $300 /bbl $240 /bbl

Treatment revenue lowers cost to $28/bbl, but
national scale would be small.

“<$200/bbl possible with great R&D success for the
non-treatment cases.”
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Algae wastewater treatment is low cost and energy efficient.
Builds algae capacity. But nutrient removal unproven.
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*rmec verview

« Cal Poly operates an algae production pilot facility at a municipal
wastewater treatment plant. Nine raceways @ 33 m? (10 m3).

* Nutrients and carbon will be re-solubilized using anaerobic digestion,
with digestate fed to the raceways.

 Recycled water will be monitored for build-up of inhibitory compounds
and removal methods tested.

 Model recycling: processes, lifecycle, techno-economics.
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1 — Approach [Milestones]

Lab studies will establish the methods and initial modeling [Select a
scalable cell lysing method; Determine biomass degradation parameters;
Characterize inhibitory compounds from algae production].

Pilot experiments will each be operated continuously over several
months, in replicate and with controls. Cells will be lysed prior to
digestion. [Measure productivity with 50% and 75% recycling of water or
nutrients; Determine degradation parameters; Characterize inhibitory
compounds].

Algal biomass will be harvested by bioflocculation, with centrifugation as
needed [95% harvesting efficiency achieved].

Go—-No Go at end of Year 2: Was pilot plant performance measured
with separate nutrient and water recycling, compared to controls?
If yes: Proceed with integrated nutrient & water recycling pilot
studies.

Up to 90% water recycling will be tested [Measure productivity;
Characterize inhibitory compounds].

Lifecycle and cost assessment studies based on pilot data.
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2 — Technical Progress

Personnel
 Trained technicians, graduate students, and undergraduates.
Instruments and Equipment

 Newly selected and installed: accelerated solvent extractor, freeze
dryer, GC-MS/FID, biogas GC, light incubator, and field centrifuge.

Lab Studies

« Conducted initial test on nutrient release/transformation from algae
during dark aerobic incubation (simulating solids decay in a pond).

« Conducted two lab algae culturing batches for training and setup.

e Conducted initial lab sonication study measuring the increase of
soluble chemical oxygen demand concentration.

Pilot Plant Operation

e Operating and sampling the nine 33-m? raceway ponds on weekly
basis to obtain baseline performance and precision data.

e Testing a new rack design for the probes and effluent tubing to
avoid fouling by filamentous algae. 13



* Aerobic solubilization of algal biomass and transformation of nitrogen
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ecnnica

A key question is effect of recycling on simple bioflocculation
harvesting process

Primary Clarifier Raceway Pond Tube Settler
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BETO Multi-Year Program Plan topics addressed.:
e R.9.2 Sustainability

« R.9.2.1 Pathway & Cross-Pathway Analysis

« R.9.2.1.1.8 Environmental - Algae

« R.9.2.1.3.8 Systemic Sustainability — Algae
 R.9.2.2 Sustainability Standards & Adoption
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« We are attempting to demonstrate key technical and
sustainability aspects of a common model of algae
biofuel production.

« Technical Challenges

— Achieving at least 75% water and nutrient recycling
capability.

— Achieving rapid and extensive degradation of cell matter in
digesters and raceway ponds to release nutrients.

— Overcoming inhibitors (free fatty acids, turbidity, etc.) with
low cost methods.

— Maintaining low-cost bioflocculation harvesting during
recycling.

— Variability among replicate ponds



5. Future Work

Laboratory Studies — Water Recycling

Optimize separately biomass and lipid productivity by mono-
and poly-cultures.

Determine extent of productivity inhibition due to repeated
water recycling.

Attempt to identify inhibitory compounds or deficient nutrients.

Attempt to rectify drags on productivity with cost-effective and
sustainable methods.

Laboratory Studies — Nutrient Recycling

Determine aerobic and anaerobic nutrient (macro and micro)
and carbon re-solubilization kinetics and ultimate extent for
various pre-treatments.

Determine biogas methane productivity for biomass &
pretreatments.

Determine re-growth kinetics on recycled nutrients and carbon.

Measure influence of recycled water and media on
bioflocculation.

18



5. Future Work

Field Studies — Water Recycling

« Demonstrate high biomass and lipid productivity by mono-
and/or poly-cultures.

o Confirm extent of productivity inhibition due to repeated water
recycling.
 Confirm identity of inhibitory compounds & deficient nutrients.

« Implement any needed and appropriate methods to decrease
Inhibition due to recycling.

Field Studies — Nutrient Recycling

« Confirm aerobic and anaerobic nutrient and carbon re-
solubilization kinetics and ultimate extent for most practical
pre-treatment.

« Confirm biogas methane productivity for biomass.

« Confirm re-growth kinetics on recycled nutrients and carbon.

« Confirm influence of recycled water and media on
bioflocculation

« Demonstrate water and nutrient recycling independently and in
Integrated system.

19



Summary

Some key elements of sustainable algae biofuel
production are the following:

— Efficient recycling of water, nutrients, and carbon

— Low-cost, low-input biofloccuation and sedimentation harvesting

— Renewable electricity production from biogas to offset other

GHG-generating inputs to the overall algae biofuel process.

We will generate basic information and model parameter
values and demonstrate integrated cultivation recycling
in lab.

We will attempt to recreate and confirm lab results in the
pilot facility.

LCA and TEA analyses will be updated based on the

results.
20



U.S. Department of Energy
— Dan Fishman

— Roxanne Dempsey

— Christine English

Review
— Colleen Ruddick (contractor)

AzCATI - ASU — ATP3 team

California Energy Commission
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* CO, addition allows most N & P to be
assimilated into algal biomass:

«“Algal Organic N” and “Algal P”
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construction (Clay

100 ha, Oil+Biogas: Total capital = $31 million

Municipal
engineering costs
Algae Digesters would be six-times
5% higher
CO, Delivery

System
9% High Rate Pond

47%
Land

9%

Solvent
Extraction
13%
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