Sustainable Development of Algae for Biofuel

2013 Peer Review May 21, 2013 Algae Platform

Rebecca Efroymson (PI), Matthew Langholtz, Virginia Dale Oak Ridge National Laboratory Center for BioEnergy Sustainability http://www.ornl.gov/sci/ees/cbes/

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Goal Statement

Project Goal

- To support sustainable development of algal biofuels by conducting research that defines and addresses potential environmental, socioeconomic, and production hurdles
- To conduct **sustainability** studies (including indicator identification) and **resource analysis** for algal biofuels

Relates to Algae Technology Area goals

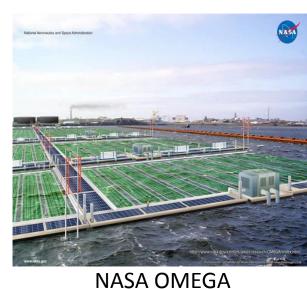
- To increase projected productivity of large-scale algae cultivation and preprocessing while maximizing efficiency of water, land, nutrient and power use
- To establish feedstock resource assessment models with geographic, economic, quality, and environmental criteria under which sustainable algal resource supply can be identified to support cultivation of 1 million metric tons ash-free dry weight algae biomass by 2017

Relates to Sustainability Area goals

• [To develop] the resources, technologies, and systems needed to grow a biofuels industry in a way that protects natural resources and maximizes economic, social, and environmental benefits

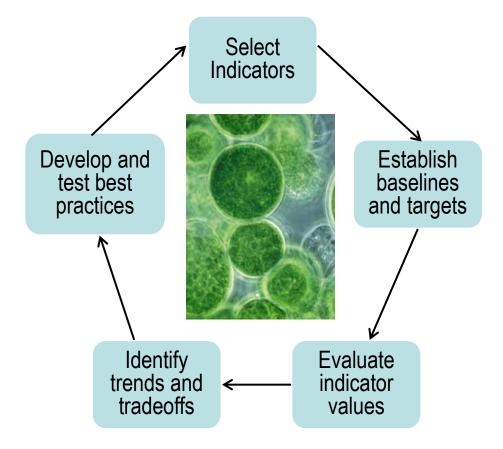
Quad Chart Overview

Timeline	Barriers
 Project start date: FY13 Project end date: TBD Percent complete: New start 	 St-B. Consistent, and Evidence-Based Message on Bioenergy Sustainability St-D. Implementing Indicators and Methodology for Evaluating and Improving Sustainability
Budget	 Ft-A. Feedstock Availability and Cost
 Total project funding DOE share: TBD 	Partners
	 University of Tennessee

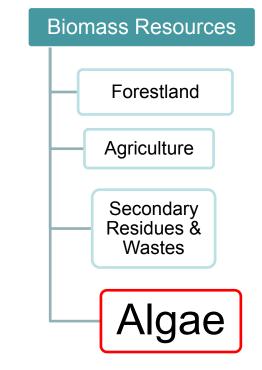

Project Overview

• History:

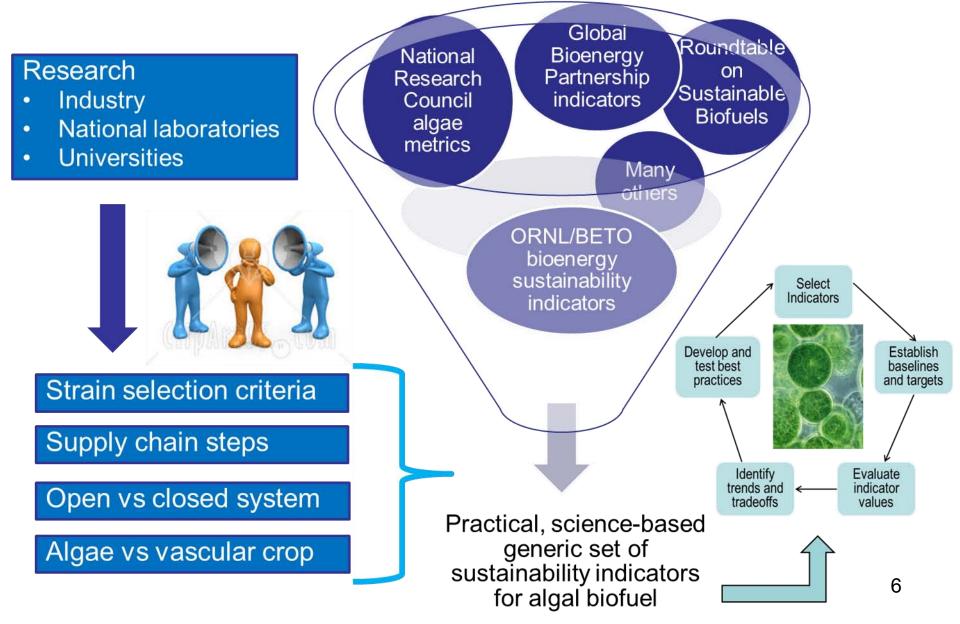
- New project for FY13
- Grew from Efroymson participation in National Research Council Committee on Sustainable Development of Algal Biofuels
- Grew from collaborations with PNNL on resource analysis
- Context:
 - Sustainability and resource analysis projects have emphasized vascular bioenergy crops and not algae.
 - This project aims to "catch algae up" to other bioenergy feedstocks with respect to sustainability and resource analysis
- Objectives
 - Identify sustainability indicators and targets that apply to algal biofuel systems to move toward best management practices
 - Add algae as a feedstock to resource assessment (i.e., add algae module to POLYSYS)


PNNL photo

Project Overview


Objectives (continued)

Task 1. Sustainability



Task 2. Resource Analysis

Resources in POLYSYS (feedstock market simulation model):

1 – Approach—Sustainability (1)

1 – Approach—Sustainability (2)

	Indicator		Indicator	
	1. Total organic carbon (TOC)	Greenhouse	12. CO_2 equivalent emissions	
Soil	2. Total nitrogen (N)	gases	$(CO_2 \text{ and } N_2O)$	
quality	3. Extractable phosphorus (P)		13. Presence of taxa of special concern	
	4. Bulk density	Biodiversity	14. Habitat area of taxa of special concern	
	5. Nitrate conc. in streams (and export)	15. Tropospheric ozone		
	 Total phosphorus (P) conc. in streams (and export) 		16. Carbon monoxide	
Water quality and	 Suspended sediment conc. in streams (and export) 	Air quality	17. Total particulate matter less than 2.5µm diam. (PM _{2.5})	
quantity	8. Herbicide conc. in streams (and export)		18. Total particulate matter less than 10µm diam. (PM ₁₀)	
	9. Storm flow	Productivity	19. Aboveground net primary	
	10. Minimum base flow		productivity (ANPP) / Yield	
	11. Consumptive water use (incorporates base flow)	Product of	Project 11.1.1.5	

McBride et al. (2011) Ecological Indicators 11:1277-1289

1 – Approach—Resource Analysis (4)

0

FY12: Evaluate algae/terrestrial land competition

- Pastureland is used for algae production in Wigmosta et al. (2011).
- Pastureland is also used for terrestrial feedstock in POLYSYS, the economic model used in the Billion-Ton Update.

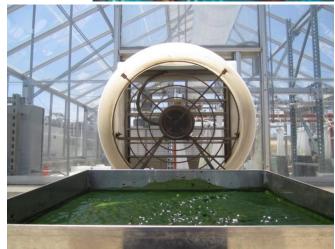
FY13: Incorporate algae into economic modeling.

- 1. Add algae module to POLYSYS.
- 2. Incorporate algae production budgets.
- 3. Make pasture rental rates endogenous.

FY14-FY15: Assess economic availability of algal feedstocks

- 1. Include algae in economic modeling.
- 2. Niche applications (e.g., co-location).
 - 3. Continue coordination with PNNL, others.

2 - Technical Accomplishments/ Progress/Results (1)


• FY 13 Q1 Milestone met

- Presented webinar on progress on sustainability indicators and solicited feedback from PNNL, INL, NREL, and ANL and National Alliance for Advanced Biofuels and Bioproducts
- FY13 Q2 Milestone met
 - Beta version of Algae Production Module in POLYSYS completed and test scenarios defined.

Other progress

- Efroymson and Dale participated in invited workshop "Data needs and testing methods for assessing the safety of a field release of synthetically designed algae for biofuel production," sponsored by EPA, Woodrow Wilson Center, and MIT
- Collaboration with PNNL on resource assessment was initiated.

2 - Technical Accomplishments/ Progress/Results (2)

Algal Biofuel Difference	Sustainability Indicator Consequence
No local soil resource use	Most soil quality indicators not important
Some algae grown in salt water	Salinity important water quality measure
CO ₂ needed	Added CO ₂ factored into GHG indicator
Resources may limit locations	Resource availability indicators needed
Photobioreactors not interacting with ecosystem	Industrial sustainability indicators may be useful
Commercial-scale development in the future, not present	Indicators should be able to be simulated
Variety of potential supply chains	Practical indicators applicable to most supply chains
Potential occupational hazards	Indicator (e.g., toxin) measurable/predictable at local scale
Breaches from natural disasters possible	Same water quality indicators; frequency of measure important
Fuels may be different in structure and manufacturing process	Air quality indicators possibly custom fit to product

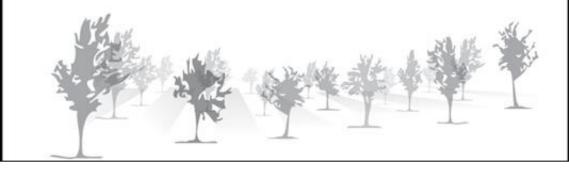
2 - Technical Accomplishments/ Progress/Results (3)

Coordinating algae resource assessment efforts with PNNL

Wigmosta et al. (2011): microalgae have the potential to generate 58 × 10^9 g yr⁻¹ of oil on 126 million acres of land, including 3 million acres of privately-owned pasture land across the U.S. WATER RESOURCES RESEARCH, VOL. 47, W00H04, doi:10.1029/2010WR009966, 2011

National microalgae biofuel production potential and resource demand

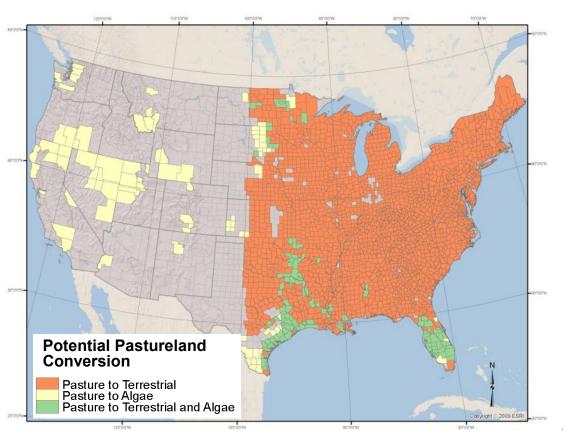
Mark S. Wigmosta, 1 André M. Coleman, 1 Richard J. Skaggs, 1 Michael H. Huesemann, 2 and Leonard J. Lane 3


Received 31 August 2010; revised 20 January 2011; accepted 11 February 2011; published 13 April 2011.

[1] Microalgae are receiving increased global attention as a potential sustainable "energy crop" for biofuel production. An important step to realizing the potential of algae is quantifying the demands commercial-scale algal biofuel production will place on water and land resources. We present a high-resolution spatiotemporal assessment that brings to bear fundamental questions of where production can occur, how many land and water resources are required, and how much energy is produced. Our study suggests that under current technology, microalgae have the potential to generate 220×10^9 L yr⁻¹ of oil,

DOE (2011) models economic availability of terrestrial feedstocks. Allows for conversion of some pasture east of the 100th meridian.

U.S. BILLI ON-TON UPDATE


Biomass Supply for a Bioenergy and Bioproducts Industry

2 - Technical Accomplishments/ Progress/Results (4)

In review: "Potential Land Competition Between Open-Pond Microalgae Production and Terrestrial Dedicated Feedstock Supply Systems in the U.S." (ORNL and PNNL)

110 counties with potential competition between terrestrial feedstocks and algal feedstocks for private pastureland.

2 - Technical Accomplishments/ Progress/Results (5)

In review: "Potential Land Competition Between Open-Pond Microalgae Production and Terrestrial Dedicated Feedstock Supply Systems in the U.S." (ORNL and PNNL)

_	Pasture land competition Index	Count of counties	Area to terrestrial (thousand ha)	Area to algal (thousand ha)	Combined pasture conversion (thousand ha)	Census private pasture (thousand ha)	% of Census pasture in 110 counties	% of private pasture in U.S.
	0-0.19	7	42	6	49	462	1%	0.0%
	0.2-0.39	65	1,126	141	1,267	3,942	19%	0.8%
	0.4-0.59	25	434	358	792	1,564	12%	0.5%
	0.6-0.79	5	39	147	186	272	3%	0.1%
	0.8-1.0	3	27	106	133	155	2%	0.1%
	>1	5	33	210	243	202	4%	0.1%
	Total	110	1,702	967	2,671	6,598	40%	1.6%

Land competition expected to be minimal.

3 – Relevance (1)

Project contributes to meeting platform goals and objectives of **BETO Multi-Year Program Plan**

	Task 1 Sustainability	Task 2 Resource Analysis	
Targets	-By 2022, evaluate, quantify, and document <u>sustainable</u> integrated pilot-scale production of biofuels from agricultural residues, and <u>algae</u>	-By 2013 establish feedstock resource assessment models with geographic, economic, quality, and environmental criteria under which algal resource supply can be identified to support cultivation of 1 million metric tons ash free dry weight algae biomass by 2017	
Milestones	-By 2022, evaluate and compare the <u>sustainability</u> of biofuel production pathways -By 2022, demonstrate <u>sustainable</u> biofuel production from all feedstocks	-By 2016, produce a fully integrated assessment of the <u>potentially</u> <u>available feedstock supplies</u> under specified criteria and conditions	

3 – Relevance (2)

- Project considers applications of expected outputs
 - Sustainability indicators will be useful for
 - Comparing current measurements to baselines
 - Modeling future sustainability components, both for individual projects and for aggregation across regions or the nation
 - Generating targets
 - Comparing bioenergy scenarios to businessas-usual scenarios or other feedstocks
 - Developing new life-cycle-analysis units
 - Developing best management practices
 - Certification programs

POLYSYS modifications will be useful for

- Resource analysis
- Comparing economic feasibility of algae to other feedstocks

Compare with other feedstocks

Compare with petroleum diesel

4 - Critical Success Factors

Technical & commercial viability are defined in part by

- Sustainability
 - Efficiency of resource use
 - Productivity
 - Compliance with environmental regulatory frameworks (Clean Water Act, Energy Independence and Security Act)
 - Social acceptability (e.g., genetically engineered organisms)
 - Profitability
- Resource analysis
 - Where to site algal biofuel facilities
 - · How much fuel can be produced

Challenges for achieving results include

- Data from industry
- Case study with minimal proprietary data
- Diversity of potential supply chains

Project success will positively impact commercial viability of bioenergy

- Environmental, economic, and social factors can impede commercial viability of energy technologies
- Measuring these factors and mitigating unfavorable ones early will speed social acceptance of commercialization

5. Future Work (1)

FY13 Milestones

Task	Milestone	Date
Sustainability	Draft environmental sustainability indicators for algal biofuels	June 2013
Resource analysis	POLYSYS Modified based on refined economic assumptions & sustainability constraints	September 2013

FY14 Plans

- Evaluate socioeconomic indicators for applicability to algal biofuels
- Begin to develop regional or case-specific targets for indicators
- Refine algae production costs in POLYSYS
- Account for competition for water, fertilizer, CO₂, and other resources

Decision Points

- If environmental and socioeconomic indicators are very intertwined, then the latter will be integrated in analysis.
- If there are no adequate sites for case studies, then large-scale of implementation of indicators and targets will be delayed.
- If algal feedstock is planned for non-pasture lands, then new areas must be 17 considered in resource analysis.

5. Future Work (2)

Focus on socioeconomic sustainability indicators

Category	Indicator
Social well-	Employment
being	Household income
	Work days lost due to injury
	Food security
Energy security	Energy security premium
	Fuel price volatility
External	Terms of trade
trade	Trade volume
Profitability	Return on investment (ROI)
	<u>Net present value (NPV)²</u>

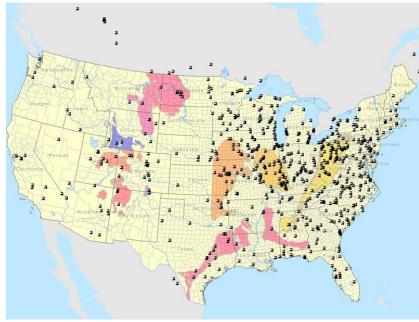
Ten minimum

practical measures

External trade

Category	Indicator
Resource conservation	Depletion of non-renewable
conservation	energy resources
	Fossil Energy Return on
	Investment (fossil EROI)
Social acceptability	Public opinion
	Transparency
	Effective stakeholder participation
	Risk of catastrophe

Dale et al. (2013) *Ecological Indicators* 26: 87-102. Product of Project 11.1.1.5


5. Future Work (3)

Resource Analysis

- Identify scenarios (cost of production and biofuel price) at which algae production becomes economically competitive with alternative uses.
- Complement other algae resource assessments with emphasis on economics and landowner profit maximization.
- Niche applications (e.g., colocation with coal plants) to be executed outside of POLYSYS.

Algae residue powder for cattle feed (photo from Texas A&M)

Coal-fired power plants can supply 19 CO₂ (map from NETL)

Summary

Relevance

 Conduct sustainability and resource analysis R&D for algae so that it catches up to R&D on other feedstocks in bioenergy portfolio

• Approach

- Task 1. Evaluate biofuel sustainability indicators for relevance to algae; ultimately develop targets and best management practices
- Task 2. Refine economic assumptions and sustainability constraints related to algal biofuels and modify tools for resource assessment

Technical accomplishments

- Webinar on sustainability indicators; engaged research community
- Beta version of Algae Production Module in POLYSYS
- Future work
 - FY13—Environmental sustainability indicators; modified POLYSYS model
 - FY14—Socioeconomic sustainability indicators; production costs based on resource competition

Success factors and challenges

- Success = use of sustainability indicators and accuracy of resource analysis
- Challenges = obtaining data from industry and uncertainties in future dominant supply 20 chains

Additional Slides

Responses to Previous Reviewers' Comments

• No previous peer review comments

Publications and Presentations

• No publications yet. This is a new project.