Overview of HyRAM Software

for Science-Based Safety, Codes, and Standards

Energy Efficiency & Renewable Energy

Presenter: Katrina M. Groth – Sandia National Laboratories

DOE Host: Will James – Program Manager: Hydrogen Safety, Codes, and Standards, Fuel Cell Technologies Office U.S. Department of Energy Fuel Cell Technologies Office April 26, 2016 Please type your question into the question box

File View Help	
- Audio	
Telephone	
O Mic & Speakers	
Dial: +1 (805) 309-0021 Access Code: 558-060-339 Audio PIN: 24	
If you're already on the call, press #24# now.	
Questions	
[Enter a question for staff]	
Send	
Webinar Now Webinar ID: 664-973-082	
GoTo Webinar	J

Hydrogen and Fuel Cells Program

HYDROGEN RISK ASSESSMENT MODELS

Overview of HyRAM Software for Science-Based Safety, Codes, and Standards

Katrina M. Groth

Sandia National Laboratories

Office of Energy Efficiency and Renewable Energy Fuel Cell Technologies Office Webinar April 26, 2016

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-XXXX

Webinar objectives

 Provide an overview of Sandia's program on Hydrogen Behavior and Risk Assessment

Hydrogen and Fuel Cells Program

- Discuss HyRAM background, motivation, and application to reduce barriers to infrastructure deployment
- Demonstrate HyRAM V1.0 to stakeholders and current and future users

Coordinated activities to enable consistent, rigorous, and accepted safety, codes, and standards (SCS)

Develop integrated methods and algorithms

for enabling consistent, traceable and rigorous QRA

Apply QRA & behavior models to real problems

in hydrogen infrastructure and emerging technology

Enabling methods, data, tools

Behavior R&D

Hydrogen and Fuel Cells Program

Develop and validate scientific models

to accurately predict hazards and harm from liquid releases, flames, etc.

Hydrogen Behavior studies enable predictive capabilities

H.F. Hydrogen and Fuel Cells Program

Quantitative Risk Assessment enables evidence-based code

What is Risk Assessment?

Risk = the potential for loss (more specifically, uncertainty about the potential for and severity of loss)

Hydrogen and Fuel Cells Program

Note: One term, many methods! Can be qualitative or quantitative. Quantitative form referred to as QRA (Quantitative Risk Assessment)

HyRAM: Making hydrogen safety science accessible through integrated tools

First-of-its-kind integration platform for state-of-the-art hydrogen safety models & data - built to put the R&D into the hands of industry safety experts

Core functionality:

- Quantitative risk assessment (QRA) methodology
- Frequency & probability data for hydrogen component failures
- Fast-running models of hydrogen gas and flame behaviors

Key features:

- GUI & Mathematics Middleware
- Documented approach, models, algorithms
- Flexible and expandable framework; supported by active R&D

Hydrogen and Fuel Cells Program

Free download at http://hyram.sandia.gov

HyRAM was developed to advance Sandia's impact on SCS

- Direct impact on current H₂ SCS:
 - **NFPA2 Ch. 7**: Established GH₂ separation distances (SAND2009-0874)
 - NFPA2 Ch. 10: Calculated risk from indoor fueling; identified ambiguity in requirements (SAND2012-10150)

Hydrogen and Fuel Cells Program

- NFPA2 Ch. 5: Enabling *Performance-based* compliance option (SAND2015-4500)
- ISO DTR-19880-1 Ch. 4: Developing generalized approach for defining specific mitigations (e.g., safety distances) using regional criteria

Ongoing activities to develop and revise SCS

- **NFPA 2:** LH₂ separation distances , revision of GH₂ separation distances
- ISO DTR-19880-1: develop DIS from the TR; develop of regional mitigation examples using SNL approach

HyRAM is also a tool that the community can use

Hydrogen and Fuel Cells Program

- Ongoing activities to develop and revise SCS
 - ISO DTR-19880-1: Development of regional safety distances and mitigations using region-specific criteria
- Additional possible areas of application:
 - NFPA and ISO code revisions enclosures;
 - Design insight –compare risk from different design options; understand which components drive risk/reliability (and which don't);
 - Assess quantitative mitigation credit (e.g., the risk importance of a gas detector)
 - Evacuation zone analysis
 - Insurance
 - As a teaching tool for hydrogen safety, QRA, and hydrogen behavior

HyRAM starting point: elements of high-quality QRA

Hydrogen and Fuel Cells Program

Repeatability

- Defined objectives and scope;
- Clear definitions of failure modes, consequences, criteria, models, and data
- Document the system, assumptions,

Validity & Verifiability

- Data, models, system, and analysis must be sufficiently documented for a peer reviewer to evaluate assumptions, completeness, etc.
- Use experimentally validated models (as available) and published models and data.

Comparability

Necessitates flexible modeling tools, documentation of methodology

Completeness

- Ability to update models as knowledge improves
- Ensure that analyzed system matches the system as built and operated

Major elements of HyRAM V1.0

QRA Methodology

- Risk metrics calculations: FAR, PLL, AIR
- Scenario models & frequency
- Release frequency
- Harm models

Generic freq. & prob. data

- Ignition probabilities
- Component leak frequencies (9 types)

Physics (behavior) models

- Properties of Hydrogen
- Unignited releases: Orifice flow; Notional nozzles; Gas jet/plume; Accumulation in enclosures
- Ignited releases: Jet flames w/ and w/o buoyancy; overpressures in enclosures

Mathematics Middleware

- Unit Conversion System
- Math.NET Numerics

Documentation

- Published algorithms (SAND2015-10216)
- User guide (SAND2016-3385 R)

+ Software and documentation are available at http://hyram.sandia.gov

Making HyRAM an enduring safety assessment tool

- HyRAM methods have had direct impact on SCS via Sandia participation and FCTO investment. Transferring this technology to the hydrogen safety community amplifies that investment to further accelerate deployments.
- Key considerations in taking HyRAM beyond single-user algorithms.
 - Graphical user interface, Windows platform, fast running
 - Data and models in HyRAM come from published sources
 - No proprietary information concerns; Users are able to override the defaults
 - Flexibility to meet a variety of user multiple goals
 - Enables implementation of QRA and hydrogen behavior (alone or together) to support a broad range of safety analyses
 - Default/generic assumptions to enable fast, high-level insights.
 - Open software architecture and growth mindset
 - Designed to enable updating data, models as information is generated
 - Framework to include multiple models for calculations; bringing in models beyond Sandia

Example of gas plume model (used for NFPA 2 safety distance to air intakes)

Input

• Release size & conditions

Input	Output				
Plot Pr	roperties	Standard	Advanced		
	Variab	le	Value	Unit	
•	ambien	t_pressure	101325	Pa	~
	ambien	t_tempera	288.15	Kelvin	~
	orifice_	orifice_diameter		Centimeter	~
	orifice_	discharge	0.61		
Plot F	roperties	Standard	Advanced		
	Varia	ble	Value	Unit	
•	H2_pr	essure	70	MPa	×
	H2_te	mperature	287.8	Kelvin	¥
	angle	_of_jet	1.5708	Radians	~

- NFPA 2 (2011) GH2 safety distances used of 4% concentration as a harm criterion
- Illustration shows distance reduction that could be achieved by using 8% criterion rather than 4%. (Suggested change for NFPA 2 (2016) to remove conservatisms introduced by selection of 4% criteria)

Output

Gas concentration envelope for different safety (harm)

Hydrogen and Fuel Cells Program

Example of QRA model (used for NFPA 2 safety distance to lot line)

Input

System description (components, parameters, facility description)

Compone	nts System Parameters	Facility	Parame	ters					
Piping	Vehicles								
	Variable			Value		Unit			
•	Pipe Outer Diameter			0.375		Inch	-		
	Pipe Wall Thickness			0.065		Inch	-		
	Internal Temperature	Compone	nts 🤇	System Parame	are	Facility Para	metere]
	Internal Pressure			bystein i araine		T doliny T dra	meters		
	External Temperature		Comp	oonent	Cou	nt	Uni	t	
	External Pressure	•	# Con	npressors	0				
			# Cylir	nders	0				
			# Valv	ves	5				
			# Inst	ruments	3				
			# Join	its	35				
			# Hos	es	1				
nts System	ts System Parameters Facility Parameters								
Occupants	Enclosure								
Number of Targets	Description			Location Distribution Type	Loca Distr Para	ation ibution meter A	Location Distribution Parameter	on er B	Location Parameter Unit
1	The person fueling assumed to be 1m dispenser	the vehicle from the	;	Deterministic	1				Meter

Output

Exposed Hours Pe Year

- Total system risk
 - Enables comparisons, e.g. risk with vs. without gas detection

Risk Metric	Value	Unit
Potential Loss of Life (PLL)	4.500e-04	Fatalities/system-year
Fatal Accident Rate (FAR)/100M exposed hours	0.1027	Fatalities in 10^8 person-ho
Average individual risk (AIR)	2.055e-06	Fatalities/year

Risk Metric	Value	Unit
Potential Loss of Life (PLL)	5.000e-04	Fatalities/system-year
Fatal Accident Rate (FAR)/100M exposed hours	0.1141	Fatalities in 10^8 person-ho
Average individual risk (AIR)	2.283e-06	Fatalities/year

- NFPA 2 (2011) GH2 safety distances for "lot line" used AIR<=2e-5 for specific input conditions.
- In HyRAM, set those conditions and then iterate on "location" variable until AIR is below this criteria.

HyRAM Toolkit demo

Didn't attend the webinar? See backup slides for some example analyses.

Users and licensing

- HyRAM V1.0 is a research prototype
- HyRAM is designed for a Windows Platform. .NET software framework, written in C#, VB, Python.
- Free download of setup.exe with acceptance of license terms on website; after download users must request a free product registration key (valid for 1 year) via email.
- Intended users: experienced safety professionals, researchers, etc.
 - Early users include: PNNL, NREL, Paul Scherrer Institute, Linde, Shell, ITM Power, Zero Carbon Energy Solutions,
- Note: HyRAM does not say that a system is/is not "safe" because safety is not an equation.
 - *"We cannot replace difficult ethical and political deliberations with a mathematical one-dimensional formula"* (Aven, Foundations of Risk Analysis, 2003).

Looking forward

 Long-term vision: Partner with stakeholders to create a fully configurable, tested software product available for users to assess hydrogen risk and consequences; Able to support a wide range of activities within safety, codes, and standards and system design.

Hydrogen and Fuel Cells Program

Ongoing Sandia research & development activities, including:

- R&D to create new data and models,
- Developing a framework for user-contributed plug-ins
- Extending QRA capabilities (e.g., Fault Trees, importance measures, uncertainty)
- Need external H2 community to lead or support formal software development, validation, testing, training, etc.
 - Currently exploring options for online wiki or forum for information exchange, community support, etc.

Summary

- **HyRAM is an integration platform** for state-of-the-art H2 safety models enables consistent industry-led QRA and consequence analysis with documented, referenceable, validated models
- Demonstrated Impact: Enabling the deployment of refueling stations by developing science-based, risk-informed codes & standards

Hydrogen and Fuel Cells Program

- Analyses for in NFPA 2 and ISO TR-19880-1
- Benchmarked results (SAND2014-3416): Survey of proposed H2 stations show that changes to NFPA 2 gaseous separation distance requirements increased station siting options by 20%."
- Future applications: Enabled by users

HyRAM is now available at http://hyram.sandia.gov

H_FCHydrogen and Fuel Cells Program

Thank you!

Research supported by the US Department of Energy's

Safety, Codes, and Standards (SCS) Program, Fuel Cell Technologies Office (FCTO), Office of Energy Efficiency and Renewable Energy (EERE)

Katrina Groth, Sandia National Laboratories

<u>kgroth@sandia.gov</u>

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Please type your question:
 into the question box

	File View Help	
	- Audio	
•••	 Telephone 	
	○ Mic & Speakers	
	Dial: +1 (805) 309-0021 Access Code: 558-060-339 Audio PIN: 24	
	If you're already on the call, press #24# now.	
	Questions	
	[Enter a question for staff]	
	Send	
	Webinar Now Webinar ID: 664-973-082	
	GoTo Webinar	ļ

Thank You

Presenters:

•Katrina M. Groth – Sandia National Laboratories

Kgroth@sandia.gov

DOE Host:

•Will James – Program Manager, Hydrogen Safety, Codes, and Standards

- <u>Charles.James@EE.Doe.Gov</u>

Webinar Recording and Slides:

(http://energy.gov/eere/fuelcells/webinars)

Newsletter Signup

(http://energy.gov/eere/fuelcells/subscribe-news-and-financial-opportunity-

<u>updates</u>)

Backup: HyRAM examples

Example: Full QRA (QRA mode)

Allows credit for mitigations that reduce likelihood of events & provides system-specific risk-reduction insight

Input

System description (components, parameters, facility description)

omponer	nts Sy	stem Parame	eters Fa	cility F	Paramet	ers				
Piping	Vehicle	s								
	Variab	le				Value		Unit		
•	Pipe O	uter Diamete	r			0.375		Inch		-
	Pipe W	/all Thicknes	s			0.065		Inch		-
	Interna	l Temperatu	Compone	ents	Syste	m Parame	ters	Facility Parar	neters	
	Interna	l Pressure		Co		-+	Cor	unt	Ue	*
	Externa	al Temperati		#0	mpone	1L	0	Jric	Un	IL .
	External Pressure		•	#0	ompres	sors	0			
			# Cylinders		•	0				
				# V;	alves		5			
				# Instrume		nts	3			
				# Jo	pints		35			
				# H	oses		1			
Fac	ility	Docupants	1		-			1	-	er
	out Do	taile Dist	4							
Input Details Distribution										
	Variable							Value		
·] [•	Population	n (Numb	er of	person	s)	5	0		
		Working h	nours per	r year	r		2	2000		
	_									

Output

- Total system risk
 - Enables comparisons, e.g. risk with vs. without gas detection

Risk Metric				Unit		
Potential Loss of Life (PLL)			500e-04	Fatalitie		
Fatal Accident Rate (FAR)/100M exposed hours			0.1027	Fatalities in 10^8 person-ho		
Average individual risk (AIR)			055e-06	Fatalitie	es/year	
	Risk Metric		Value		Unit	
	Potential Loss of Life (PLL)			00e-04	Fatalities/system-year	
	Fatal Accident Rate (FAR)/100M exposed hours			0.1141	Fatalities in 10^8 person	-ho
	Average individual risk (AIR)			83e-06	Fatalities/year	

Insight into risk drivers: scenario frequency & risk ranking

Scenario	End State Type	Avg. Events/Year	PLL Contribution
0.01pct Release	No Ignition	0.03448206	0.00%
0.1pct Release	No Ignition	0.00495318	0.00%
1pct Release	No Ignition	0.00148741	0.00%
10pct Release	No Ignition	0.00116683	0.00%
100pct Release	No Ignition	0.00071471	0.00%
0.01pct Release	Jet fire	0.00025097	0.00 %
0.01pct Release	Explosion	0.00012448	0.01 %
100pct Release	Jet fire	0.00003669	0.00 %
0.1pct Release	Jet fire	0.00003605	0.00 %
0.1pct Release	Explosion	0.00001788	0.00 %
100pct Release	Explosion	0.00001770	95.15 %
1pct Release	Jet fire	0.00001083	0.00 %
10pct Release	Jet fire	0.0000849	0.00 %
1pct Release	Explosion	0.00000537	0.03 %
10pct Release	Explosion	0.00000421	4.81 %

Example: Jet Flame behavior (Physics mode)

Consequence-only modeling of ignited release

Input

 Leak size and known conditions.

Input Output							
Notion	Notional Nozzle Model: Birch2						
Plot r	outine						
() ()	PlotT 🔘 PlotIso						
	Variable	Value	Unit				
	Ambient Temperature	15	Celsius 💌				
	Ambient Pressure	1	Atm 👻				
	Hydrogen Temperature	15	Celsius 💌				
	Hydrogen Pressure	10000	PSI 🔻				
	Leak Diameter	0.01	Meter 👻				
•	Relative Humidity	0.89					
	Leak Height from Floor (y0)	1	Meter 👻				

Output

 Shows flame temperature at different distances -direct analog to original safety distance work.

Consequence modeling of unignited release

Input

Input	Output					
Plot Pr	roperties	Standard	Advanced			
	Variab	le	Value	l	Unit	
▶	ambien	t_pressure	101325	Pa	а	~
	ambien	t_tempera	288.15	К	elvin	~
	orifice_	diameter	0.1	Ce	entimeter	~
	orifice_	discharge	0.61			
Plot F	roperties	Standard	Advanced			
	Variał	ble	Value	1	Unit	
•	H2_pr	essure	70	N	ИРа	<
	H2_ter	mperature	287.8	ĸ	Kelvin	<
	angle_	of_jet	1.5708	F	Radians	<

• Release size & conditions

Output

 Gas concentration at different distances - direct analog to NFPA2 safety distance work

Hydrogen and Fuel Cells Program

Example: Jet Flame behavior (Physics mode)

Consequence-only modeling of ignited release

Input

 Leak size and known conditions.

Input Output							
Notion	Notional Nozzle Model: Birch2						
Plot r	outine						
Image: A start of the start	PlotT 🔘 PlotIso						
	Variable	Value	Unit				
	Ambient Temperature	15	Celsius 🔻				
	Ambient Pressure	1	Atm 💌				
	Hydrogen Temperature	15	Celsius 🔹				
	Hydrogen Pressure	10000	PSI 💌				
	Leak Diameter	0.01	Meter 💌				
+	Relative Humidity	0.89					
	Leak Height from Floor (y0)	1	Meter 💌				
		· ·					

Output

- Tabular data of heat flux at user-defined distances
- Shows heat flux boundaries for different harm criteria

Example: Overpressure & layering in an enclosure

Output: Overpressure (ignited) &

Height of accumulated layer (unignited)

H_F Hydrogen and Fuel Cells Program

Example: Engineering Toolkit

• Standalone functionality for simple calculations, e.g. density, tank volume/mass conversion, tank blowdown rate

Hydrogen and Fuel Cells Program

Engineering Teelluit

						Temperat	ure, Pres	ssure and Der	nsity Tank	Mass M	lass Flow Rate	e	
Engineering Toolkit						Input	Output						
Temperature, Pres	Tank Mass	Mass Flo	ow Rate		Time	to Empty	(seconds)	1.84486938	508				
Temperature	Celsius			21		0.7		1				_	
Pressure	Atm			1			0.6 -						-
Volume	CubicMeter		~	5.437		5	0.5 -						-
				Calcula	te Mass	Rate [kg/	0.4						-
Mass	Kilogram		~	0.4538209	942398	ass Flow	0.3						-
1						W	0.2 -	\mathbf{A}					-
							0.1						-
							0.0	0.	.5	1.0 time [s]	1.	5	2.0
												Γ	Save Plot