Biogas Purifications for Fuel Cells SulfaTrapTM Sorbents

Gökhan Alptekin, PhD Vice President, Technology Tel: 303 940 2349

galptekin@tda.com

DOE Workshop on Gas Clean-up for Fuel Cell Applications

Argonne National Laboratory March 7, 2014

TDA Research Inc. • Wheat Ridge, CO 80033 • www.tda.com

Background - SulfaTrapTM Sorbents

SulfaTrap™ sorbents for stationary/mobile fuel cell applications

- Fundamental work started at TDA Research in 2002
- SulfaTrap LLC was established as a TDA spin-off in March 2013
- SulfaTrap LLC supplied over 70 tons of sorbent products for distributed fuel cell systems and chemical synthesis plants
 - Natural gas, LPG, biogas, ethylene and reformate gas desulfurization

Turn-key solutions for chemical plants

Research

Major Contaminants in Biogas

- Sulfur and siloxanes are potent poisons for all fuel cells
- Primary source of sulfur in biomass are amino acids
 - In anaerobic digesters these degrade to form H₂S & mercaptans

- Siloxanes are man-made organic compounds, used in hygiene/health-care products
- When the biogas is combusted, siloxanes are converted to SiO₂ that can foul surfaces

TDA's Approach

- TDA's approach is to use an ambient temperature gas clean-up system to remove all contaminants to ppbv levels
- The purification system will be downstream of a bulk desulfurization system (biological, liquid redox or solid scavengers)

- Key sorbent requirement is tolerance to high levels of moisture to eliminate the energy penalty for:
 - Biogas compression
 - Chilling
 - Biogas at 2-4 atm, 15°C could have 4,000-9,000 ppmv H₂O

Bulk H₂S Removal

- Technologies are available to remove H₂S and light mercaptans
- Increasing mechanical integrity and reducing cost of disposal could be potential areas of improvement

SulfaTrapTM - Polishing Adsorbent

T=22 $^{\circ}$ C, 50 ppmv various sulfur compounds, 4,000 ppmv H₂O, GHSV = 15,000 h⁻¹

- SulfaTrap[™]-R2F and R8 sorbents are highly effective in removing all organic sulfur compounds from wet biogas
- High performance up to 9,000 ppmv

SulfaTrapTM-R5C - Impact of Moisture

10ppmv COS, Natural Gas mixture or $CH_4/CO_2 = 60/40$, 3,500 ppmv H_2O , 15000 h^{-1} GHSV

SulfaTrap[™]-R5C maintains its capacity in biogas (high moisture and CO₂)

Field Demonstrations

 Slipstream tests, in collaboration with FCE, at the EMWMD and City of Tulare were successful

Sulfur Removal

Siloxane Removal

Summary

- Conventional gas clean-up systems do not meet the gas purity requirements of the biofueled fuel cells
- Presence of high concentrations of moisture reduces the sulfur capacity of conventional adsorbents
 - Contaminants such as dimethyl sulfide and carbonyl sulfide are particularly difficult to remove from high moisture gas
- TDA Research/SulfaTrap LLC is developing high capacity sorbents that can reduce the sulfur concentration to less than ppbv levels
- With government funding, the technology is progressing to full-scale demonstration

Lead-lag configuration with 6' x 6' skid for a 300 kW_e system

~300L sorbent – 4 month operation