ABOUT HYGEAR

• Established in 2002
 – 65 people
 – Acquired Plug Power Europe in 2009

• Products
 – Hydrogen Generation Systems
 – Biogas Cleaning systems
 – Fuel Cell Systems

• Facilities
 – Catalysis and Adsorbents laboratory
 – 2000 m² System test facilities
 – Rapid prototyping shop
 – Flexible system assembly line
NATURAL GAS CLEANING - SULFUR

• Most sulfur is removed at well!!

• What is in pipeline depends on source:
 – Netherlands: sulfur removed at well
 – Russia: small amounts H\textsubscript{2}S & COS
 – North Africa: all sulfur removed (LNG source)
 – North Sea: small amounts of H\textsubscript{2}S & COS
 – In all countries: TetraHydroTyofene (THT) added as odorant
 • South Germany and Italy add mercaptans (Tertiarybutylmercaptan)

• Different gas grids!
 – Every country own regulations
 – L-Gas: 81\% CH\textsubscript{4}, CO\textsubscript{2} + N\textsubscript{2}, C\textsubscript{2}-C\textsubscript{3}
 – H-Gas: ±100\% CH\textsubscript{4} (plus C\textsubscript{2}-C\textsubscript{3})
 – Peak shaving: propane + air
WHERE ARE WE ON THE MAP OF SOLUTIONS?

- Commercial solutions
DIFFERENT SOLUTIONS, DIFFERENT SPECS

• Scavengers
 – Remove sulfur down to ppm-range
 – Different solutions for different input amounts etc

• Polishers
 – Remove sulfur down to ppb-level
SOLUTIONS USED IN EUROPE

• Small scale fuel cells: adsorption
 – Active carbon (no COS, large volume)
 – Zeolites (mercaptans, THT)
 – Metal based (H$_2$S, COS)
 – Mixed beds (sequence is important! COS difficult)
CONCERNS / ISSUES / IMPROVEMENTS NEEDED

• Costs
• Interference by other compounds
 – water, higher hydrocarbons
• Non full use of material
 – Difference actual sulfur content in feed vs feed specifications
 – Sulfur sensing too costly for small units
 – Replace unused material
• Household
 – Major concern is toxicity/flammability of spent cartridges
 – Active carbon / zeolite as solution for households
 • Chemical company is starting service for replacements and logistics
• Industry
 – Ni-based solutions
 • Carcinogenicity of nickel subsulphides
>20 materials from 7 manufacturers were analyzed

>10 materials were tested in laboratory reactors

3 materials and combinations thereof proved to be acceptable

- Zeolite: flammable after use, captures THT and Mercaptans
- Metal-based: non flammable after use, captures Mercaptans, H₂S and COS
- Ni-based: non flammable after use, high capacity for mercaptans, H₂S and COS, carcinogenic
ALTERNATIVE SOLUTION: HYDRODESULFURIZATION

- Major impact on system design
 - Needs H₂
 - Needs heat 350°C
 - Guard-bed needed during start

- Dis- & Advantages
 - Cost benefits are minor
 - Converts all sulfur-species
 - No difficult waste!

- HDS/ZnO hardly used for fuel cells
 - no sulfur removal during start-up
 - water containing reformate not suitable for most catalysts & ZnO
 - complex solution (reliability, sensoring)
• Do not add sulfur....

• Use non-sulfur containing odorant
 – Gasodor®
 – Nitrogen based odorant. (m)ethylacrylate, methylethylpyrazine

• Only used in a few German cities
 – No expectations of wide use
 – High cost of introduction
BIOGAS (DIGESTER GAS) UPGRAADING

• Remove CO$_2$ by
 – Water / amine washing (large plants, 500-1500m3/h)
 – (V)PSA (mid-size, 200-700 m3/h, landfills)
 – Membranes (small size, <200 m3/h)
 – 137 plants in Europe (2011)

• Remove S by
 – One step (<200ppm):
 • active carbon with O$_2$ enrichment
 • Impregnated active carbon
 (high costs for waste removal)
 – Two step (>200ppm):
 1. Biological reduction / iron sponges
 2. Active carbon

• Siloxanes . Halogens removed by active carbon as well
• No more new landfills in Europe. Focus thus on digesters
PURIFICATION OF HYDROGEN STREAMS

• Traditional: bottled gas
 – PSA

• Fuel cell use
 – O_2: catalytic deoxidizer
 – Cl/chlorate: alkali water scrubbing
GASIFIER GAS CLEAN UP

- No mature market in Europe
- Technologies available for most contaminants

- A lot of research on tar removal
 - Today too costly
 - OLGA system is state of the art

- Quenching of gas to prevent tar formation results in low efficiencies

- Promising technologies for hot cleaning
 - Plasma cleaning
 - Catalytic candles
THANK YOU

HyGear
Westervoortse dijk 73
6827 AV Arnhem
www.hygear.nl

ENGINEERING FOR SUSTAINABLE GROWTH