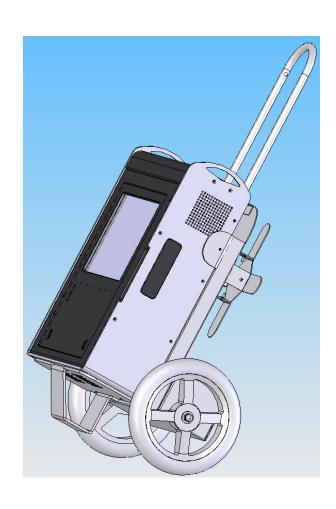
Field Validation of an On-Line FTIR Analyzer for Measuring Total Siloxane Content in Landfill Gas

Barbara Marshik

MKS Instruments


Barbara Marshik@MKSinst.com

Presented at the 2014 LMOP Conference

MKS Instruments AIRGARD® FTIR

- MKS AIRGARD® FTIR Technology
 - Capable of analyzing siloxanes and TMS to very low concentrations
 - At-line analysis in high level CH₄,
 CO₂ and H₂O
 - Fixed installations or transportable to site
- Total Siloxane and Total Silicon Method
 - Works well in raw or scrubbed biogas applications
 - TMS and Siloxane continuous monitoring at <0.2mg/m³

Issues with Current Sampling/Analysis Methods

Sampling Methods

- Process
 - Landfill gas sample collected at site
 - Sample sent to off site analytical lab
 - Analysis results generally take 1 week turn around time
- Extraction / Concentrators
 - Thermal Desorption tubes (Tenax)
 - JetCare (oil-based extraction)
 - Impingers (methanol)
 - Extra processing needed to release or determine Siloxane content
- Direct Sampling Methods
 - Tedlar bags
 - Suma Canisters
 - Canisters must be coated with glass

Laboratory Analysis

- Difficultly in sending gas samples
 - Interstate as well as national border issues
- Not representative
 - One shot analysis over 2 30 minutes
- Sample prep or conditioning required
 - Remove H2O
 - Concentrate sample
 - Recover / extract from media Some Siloxanes unrecoverable
- Long analysis time
 - 3 days up to a week TAT
- Inconsistent Results
 - Duplicates (if taken) can be completely different
 - No gas standards available
 - Multiple laboratories do not always agree
 - Sample handling issues
 - Conversion of TMS and Siloxanes during transportation, due to media or H2O or other gases in biogas sample

• mks

Example of Single Landfill Multiple Laboratory Discrepancies

S	il	ОХ	an	e		
S	il	ΩX	an	e+'	ΤN	15

Siloxane+TMS

Siloxane

Siloxane

Siloxane+TMS

Siloxane

Siloxane+TMS

Siloxane

Siloxane+TMS

Siloxane
Siloxane+TMS

Inlet WET / RAW (Si mg/m3)									
Tedlar AnSol	Tedlar OSB	TENAX CAS	FTIR	JetCare*					
11.292	12.480	13.143	17.661						
14.812	18.536	18.943	24.317	110.080					
	_	•		7					
	3.407	16.304	17.867]					
	6.797	22.704	24.725						
Inlet DRY (Post Chiller) (Si mg/m3)									
Tedlar AnSol	Tedlar OSB	TENAX CAS	FTIR	JetCare					
10.508	10.606	9.981	17.546						
13.608	14.950	15.481	24.382	81.801					
				_					
	9.432	15.198	17.556						
	14.795	22.798	24.146						
Outlet (Si mg/m3)									
Tedlar AnSol	Tedlar OSB	TENAX CAS	FTIR	JetCare					
0.838	0.647	1.558	1.896						
0.838	1.131	1.650	2.715	7.174					
		•		-					
	0.563	1.681	2.169						
	0.971	1.791	2.982						

^{*} Calc converting from Si on a CH4 basis to Si = Si(CH4 Basis)*CH4 (in Percent) / 100

• mks

Field Validation Method Analyte Spike Recovery Method

- Gas Mixtures
 - (A) Purchase cylinders from Gas Supplier

TMS needs its own cylinder Siloxanes blended in a cylinder Analyze Cylinder gases response on FTIR prior to shipping Send equipment and cylinders to site

- (B) Use Syringe Pump
 Mix with Hexane to vaporize issues with Solvent
- Analyze the FTIR Response to the Spike Gas
 - Run Cylinder gases response on FTIR at Site prior to Spike Test
 - Run the Landfill gas sample through the FTIR Native Siloxane content
 - Dilute 10% of landfill gas with "known" Siloxane mix (Spike)
- Validate the FTIR Response
 - Use MFCs for Landfill gas and Spike gas if possible
 Or at least use MFC for Spike gas and CO2 for dilution amount
 - Calculate how much Siloxane should reach the FTIR in the diluted stream
 - Calculations

Determine Native Siloxane – run Landfill gas only
Determine Siloxane content of the undiluted Siloxane Gas Mixture
Determine Siloxane content during the 10% Spike
Calculate the % Recovery (Actual Spike / Expected Spike)
If within ± 30% Expected Value then this is "validated"