High Efficiency Cold Climate Heat Pump

2016 Building Technologies Office Peer Review

Bo Shen, shenb@ornl.gov Oak Ridge National Laboratory

Project Summary

High Efficiency Cold Climate Heat Pump -(CCHP) CRADA

<u>Timeline</u>:

Start date: **01-Oct-2010**

Planned end date: May-Sep-2017

Key Milestones

1. Tandem fixed-speed system: Meet 76% capacity at-13°F vs. 47°F; COP=4.2 at 47°F - March/2014.

- Tandem vapor injection system: Meet 88% capacity at-13°F vs. 47°F; COP=4.4 at 47°F June/2015.
- 3. Field investigation of a prototype CCHP: eliminate auxiliary heat down to -13°F in an occupied home— April/2015.

Budget:

Total Project \$ to Date:

• DOE: \$2,839K

• Cost Share: partner in-kind cost share exceeds DOE cost

Total Project \$:

• DOE: \$2,839K

• Cost Share: partner in-kind cost share exceeds DOE cost

Key Partner:

CRADA with Emerson/Copeland:

Solution: Singlestage compression system development and assessment.

Project Outcome:

- Achieve COP@47°F > 4.0; achieve capacity@-13°F > 75%, vs. rated capacity@47°F.
- Maximize COP at 17°F and -13°F with acceptable payback period.

Two prototypes of 3-ton, split CCHPs achieved the project goals.

Purpose and Objectives

Problem Statement:

- Typical HPs don't work well at low ambient temps due to very high discharge temp and pressure ratio
- HP heating capacity not sufficient to match building load
- COP degrades significantly with ambient temperature

Target market/audience: The principal target market is 2.6M electricheated dwellings in cold regions. It would contribute to annual site energy savings of 3,664,405 MMBTU and CO2 emissions reduction of 470,000 tons.

Approach: 'More Cost Effective' Configuration

- 1. Two identical, fixed-speed compressors, specially optimized for heating mode, tolerate up to 280°F discharge temperature.
- 2. A single compressor to match cooling load, and heating load at moderately cold temperatures, turn on both compressors at low ambient temperatures when needed.

Approach - 'Premium' Configuration

 Equal Tandem, Vapor Injection Compressors + Inter-Stage Flash Tank + EXV Discharge Temperature Control.

Progress and Accomplishments

Market Assessment

Concept Design

Lab Prototyping

Optimization

Field Verification

Accomplishments:

Achieved the project goals, i.e. >75% capacity at -13°F, COP >4.0 at 47°F

- 1. Lab prototype with tandem fixed-speed (76% capacity at -13°F vs. 47°F; COP=4.2 at 47°F)
- 2. Lab prototype with tandem vapor injection (88% capacity at 13°F vs. 47°F; COP=4.4 at 47°F)
- 3. Field prototype (tandem fixed-speed) operated down to -12°F without auxiliary heat, achieved >40% energy saving vs. a baseline fixed-speed HP.
- 4. Project final report complete (CRADA with Emerson)

Lab Measured Heating Capacities

• CCHPs eliminate auxiliary strip heating down to -13°F in US cold regions.

Lab Measured Heating COPs

The 'premium' system with tandem VI compressors achieved 5% better COPs than the 'more cost-effective' fixed-speed compressor version at various ambients.

Field Testing of a 'More Cost-Effective' System, from Feb 2015 to April 2016

Field testing in Ohio outdoor unit, at a residential home having a design cooling load of 3-ton

Field testing in an occupied home in Ohio

Indoor unit and DAQ

Compressor Running Time Fractions

- Field ambient temperature went down to -12°F.
- 2. The second compressor cycled with 80% running time, even at -12°F (having room for more capacity).

No auxiliary heat needed down to -13°F.

Field Heating COPs and Comfort Level

- 1. Heat pump COP at -13°F > 2.0.
- 2. Seasonal, average, heating COP was 3.16, i.e. 10.8 HSPF.

Note: Total COP includes cyclic and frost/defrost losses, etc.

* Temperature setting at 68°F with 2R dead band.

Huge energy reduction in coldest months compared to previous conventional HP (13.0 SEER/8.0 HSPF)

>40% energy reduction vs. previous HP with similar average temperatures of 20°F

Compared to other CCHPs on the market (Northeast Energy Efficiency Partnerships, CCHP Listing)

- 1. ORNL prototypes reached top efficiency level in the target capacity range, as compared to Japanese VRF mini-split and multi-split units.
- 2. ORNL prototypes are much less expensive (estimated cost: \$4K for a 3-ton split CCHP).

Project Integration and Collaboration

Project Integration:

Compressor solutions: Collaborative R&D agreement (CRADA) with Emerson Climate Technologies (US component and control). World leader of compressor technologies. Outcomes of the project will be transferred to US OEMs.

Heat pump development: Provide design, analysis, laboratory and field testing support to Unico INC. (CRADA).

Partners, Subcontractors, and Collaborators: CRADA partners Emerson Climate Technologies and Unico Inc.

Communications:

- Market assessment report (ORNL research report, http://info.ornl.gov)
- Four presentations for Annex 41, International Energy Agency.
- Five conference papers and ORNL reports, one journal paper.
- One project final report.

Next Steps and Future Plans

Next Steps and Future Plans:

Field testing a CCHP with tandem VI compressors in Alaska - 2016 to 2017

Market Impact:

- Emerson Climate Technologies to provide compressor solutions to US OEMs interested in developing CCHPs.
- Unico to put equipment on the market.

REFERENCE SLIDES

Project Budget

Project Budget: DOE total \$2,839K- FY11-16

Cost to Date: ~\$2,439k through March 2016

Additional Funding: None expected

	Budget History										
FY 2011 to FY 2015 (past)			.016 rent)	FY 2017 (planned)							
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share						
\$2,439K	*	\$400k	*	NA	NA						

• In-kind contribution from CRADA partner –exceeds DOE funding level; exact total is confidential information

Project Plan and Schedule

Original initiation date: 01-Oct-2010 -- Planned completion date: 30-May-2017 (minor delays in lab prototype fabrication and testing schedules) Go/no-go decision points

- * March 2014 Tandem fixed-speed lab prototype met project goals- Passed
- * September 2015 Field testing of HP using tandem fixed-speed compressors— *Passed*
- * June 2015 Tandem vapor-injection lab prototype met project goals- Passed

	•	Milestone/Deliverable (Originally Planned) use for missed										
	•	Milestone/Deliverable (Actual) use when met on time										
		FY2	2014		FY2015			FY2016				
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
Past Work												
Fab. CCHP prototype, install, begin tests												
G/ng: tandem single-speed prototype met project goals												
Develop control strategy and design control board			•									
Fabrication of Ohio field test units and initiate installation												
G/ng: tandem VI prototype met project goals												
G/ng: Complete field testing report for tandem single-speed												
Complete CRADA final report with Emerson												
Fabrication of HP using VI compressors for Alaska field testing												
Complete field testing in Alaska												