R25 Polyisocyanurate Composite Insulation Material

2016 Building Technologies Office Peer Review

ENERGY Energy Efficiency & Renewable Energy

Kaushik Biswas, biswask@ornl.gov Oak Ridge National Laboratory

Project Summary

Timeline:

Start date: Oct 1, 2014

Planned end date: Sep 30, 2017

Key Milestones

- 1. First full-scale MAI-polyiso composite measured to be R-10/inch; 9/30/15
- Verify R-value of improved MAI-polyiso composite produced on the production line to be R-12/inch ; 9/30/2016
- 3. Optimized cost of commercial composite panels with R-12/inch; 6/30/2017

Budget:

Total Project \$ to Date:

- DOE: \$1,101,756
- Cost Share: \$177,812

Total Project \$:

- DOE: \$1,237,500
- Cost Share: \$310,000

Key Partners:

Firestone Building Products Company

NanoPore, Inc.

Project Outcome:

Develop a 2-inch thick composite foam insulation board with R25 (hr-ft²-F/Btu), with a cost premium of \$0.30/ft². This addresses the MYPP goal of creating low-cost, advanced insulation materials.

Purpose and Objectives

Problem Statement: Address the EERE BTO's mission to develop low-cost, high-performance advanced insulation materials for building envelopes (*Table 8 under section 2.3 of BTO's Multi-Year Program Plan or MYPP*).

- Per BTO's 2014 Roadmap, adding R24 to existing walls has a 2030 technical potential of 1,101 TBTUs.
- Need 4 inches or more of current insulation materials vs. 2 inches of the new composite insulation.

Purpose and Objectives

Target Market and Audience: The target market is residential walls and low-slope commercial roofs, both retrofit and new construction.

• In 2010, the primary energy consumption attributable to commercial roofs and residential walls was 2,810 TBTUs (per 2014 BTO Roadmap).

Impact of Project:

- 1. <u>Major output:</u> Development of R12/inch composite insulation with MAI cores encapsulated by polyiso foam, produced on a manufacturing line.
- 2. <u>Near-term outcomes (end of project):</u>
 - a. Verified thermal performance (R12/inch) of the insulation boards.
 - b. Techno-economic analysis evaluating \$0.30/ft² cost premium target.
- 3. <u>Mid-term:</u> Field-demonstration and evaluation of long-term performance.
- 4. <u>Long-term</u>: Incorporation of the new composite insulation into regular production by foam manufacturer(s) and market adoption.

Approach

Key Issues:

- Damage to MAI panels by exothermic foam expansion during encapsulation.
- Complete foam encapsulation of the MAI panels (without air pockets).
- Moisture-related issues arising due to addition of the composite insulation.
 - Barrier films of the MAI panels act as additional air/vapor barriers for building envelopes.

Approach

Distinctive Characteristics:

- Use of MAI (40% lower cost than regular vacuum insulation panels or VIPs).
- Polyiso (PIR): Highest R/inch of all commercial insulation materials, with demonstrated toughness and durability in construction environments.
- New composite insulation: Combining the features of MAI panels (very high R-value) and polyiso (high R-value and durability).
- Encapsulation of MAI panels in polyiso foam protects them during transportation and handling, installation, and use.

Energy Efficiency & Renewable Energy

Laboratory-scale experiments: Foam encapsulation of MAI panels

- MAI panels with metallized and all-polymer barrier films were tested.
 - Polymer barriers significantly reduce thermal bridging around MAI panels.
- The foam encapsulation of MAI panels was satisfactory, except one test.
 - Caused by lab foaming conditions; not expected in plant production.
- MAI panels withstood the exothermic foam expansion.
 - No measureable dimensional changes to MAI panels.
 - Barrier surface temperature rise (<90°C) less than damage threshold (110°C).

Laboratory-scale experiments: Foam adherence to MAI barrier films

- Metal plates attached to foam surface and cured for 3 days.
- Foam cut around the metal plates and pulled until adhesive (foam-MAI barrier) or cohesive (foam) failure.
- All barriers passed the minimum required adhesion force of 4 psi.

MAI barrier ID	Adhesion (psi)	Failure mode
T1-1 (PE)	6.8	Adhesive
T1-2 (PET)	31.2	Cohesive
T1-3 (BOPP)	5.1	Adhesive
T1-4 (nylon)	17.9	Partial cohesive

Energy Efficiency & Renewable Energy

Design of MAI-Polyiso Composite Boards Based on Thermal Modeling

- First-generation 4' x 8' composite design
- 4x3 array of MAI panels (22.75" x 14.7")
 - 1 inch gaps for mechanical fasteners
 - 86.9% MAI coverage
- Estimated R-value of the 2-inch board: 25.5 hr-ft²-°F/Btu (*R12.7/inch*)

Simulated heat flows through a MAI-foam composite board.

- July 2015: Three first-generation composites produced in a manufacturing plant.
 - No major changes needed to the assembly line; critical consideration with respect to cost premium of the new composite insulation.

MAI panels attached to high-density (HD) foam substrate

MAI-HD board fed through foaming line

Finished composite insulation boards

- September 2015: Guarded hot box tests (ASTM C1363) yielded R21.6 for the 2-inch composites (*R10.8/inch*).
 - Year 1 Go/No-Go target: R10/inch
- Autopsy of one board performed after the hot box test.
 - No discernible changes in MAI shape and dimensions.
 - One area had poor foam fill, with implications on measured R-value.

- Second generation composites: Higher MAI coverage to achieve R12/inch.
 - 89.8 91.3% vs. 86.9% in FY15
- Modeling indicates increases in overall Rvalues of 1.3 – 2.1 hr-ft²-°F/Btu
 - ΔR /inch of 0.7-1.1

Second-generation composite production (March 3, 2016)

- Potential online quality control using IR imaging
- Thermal diffusivity (k/pc_p): Damaged MAI
 > Intact MAI
 - Cools the 'warm' spray-applied foam faster.

Techno-economic Analysis

- September 2015: Interim report detailing methodology and strategy.
- Identifying external factors impacting demand for new composite insulation.
 - e.g. competitive products, energy cost, building codes, etc.
- Evaluation of production efficiencies and material cost reductions needed to achieve the desired \$0.30/ft² cost premium.
- Initial analysis report due in April 2016 (based on Year 1 project results).
 - Phase 2 analysis report: December 2016.
 - Final analysis report: June 2017.

Hygrothermal Analysis

• Hygrothermal modeling indicated no adverse moisture-related effects due to addition of MAI panels.

Market Impact: Potential market impact is listed as the project is still in R&D stage.

- Based on numerical simulations of standard residential and commercial building models, the new R25 insulation board has a 2030 primary energy savings potential of 1319 TBTUs.
- The techno-economic analysis, due by June 2017, will determine cost premium and/or pathways to desired cost premium and the market demand.

Awards/Recognition: N/A

Lessons Learned:

- Handling of MAI-HD boards (before the foaming process) Improper handling can lead to detachment of MAI panels from the HD substrate.
- One composite produced during July 2015 contained 2 failed MAI panels (out of 12); Quality control process is needed during eventual mass production.
 - Simulations indicate 15% reduction in R-value due to 2 failed MAI panels.

Project Integration and Collaboration

Project Integration: The project is a collaboration between ORNL, Firestone Building Products Company and NanoPore, Inc. Dr. Jim Hoff of Tegnos Research Inc. is performing the techno-economic analysis.

- Firestone has been in the polyisocyanurate industry for 25 years and is the largest manufacturer of commercial roofing materials in the world.
- NanoPore has been developing nanoporous materials and advanced insulation (including VIPs) since 1993 and has more than 100 patents.
- Dr. Jim Hoff has 30+ years of executive experience in the building materials industry and is a former Vice President at Firestone Building Products.

Communications:

- Manuscript titled 'Development of High Performance Composite Foam Insulation with Vacuum Insulation Cores' submitted to Thermal Performance of the Exterior Envelopes of Whole Buildings XIII International Conference.
- 'Flipping the switch,' R&D Magazine Article, February 2015, http://www.rdmag.com/news/2015/02/flipping-switch

- Develop accelerated aging test protocol for MAI panels (June 2016)
- Verify improved composite boards to be R12/inch by testing in ORNL's guarded hot box (Sept. 2016)
- Detailed techno-economic analysis and cost optimization (June 2017)
- Field-testing of thermal performance of composite boards in ORNL's natural exposure test (NET) facilities (Oct. 2016 Sept. 2017)

Additional Tasks (beyond current scope):

- Demonstration of new composite insulation in actual or simulated retrofit applications.
 - Identify installation challenges, design changes required, etc.
- Long-term testing in actual buildings to ascertain lifetime thermal performance of the composite insulation.

REFERENCE SLIDES

Energy Efficiency & Renewable Energy Variances: N/A Cost to Date: 89% of the budget (including cost to date and encumbered costs) Additional Funding: N/A

Budget History										
FY 2015 (past)		FY 2 (curr	.016 rent)	FY 2017 (planned)						
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share					
\$542,961	\$113,378	\$431,006	\$140,602	\$264,032	\$56,154					

Project Plan and Schedule

- Changes in ORNL's subcontracting process resulted in delays at the beginning of the project in providing funds to the industry partners, causing the initial milestones to slip.
- There are Go/No-Go decision points at the end of each Fiscal Year:
 - FY15 First full-scale MAI-polyiso composites measured to be R10/inch (9/30/2015)
 - FY16 Improved MAI-polyiso composites measured to be R12/inch (9/30/2016)

Project Schedule													
Project Start: 10/1/2014		Completed Work			<								
Projected End: 9/30/2017			Active Task (in progress work)										
		Milestone/Deliverable (Originally Planned)											
		Milestone/Deliverable (Actual)											
		FY2015			FY2016			FY2017					
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	
Past Work													
Bench-top prototype with MAI panel encapsulated with foam													
Methodology and strategy for techno-economic analysis													
First full-scale MAI-polyiso composites measured to be R-10/inch													
Hygrothermal analysis of envelope assemblies with MAI panels													
Design for improved MAI-polyiso composite (using modeling)													
Current/Future Work													
Accelerated aging test protocol for MAI panels													
Improved MAI-polyiso composites measured to be R-12/inch													