LOW-GWP HVAC SYSTEM WITH ULTRA-SMALL CENTRIFUGAL COMPRESSION

2016 Building Technologies Office Peer Review

Dr. Edward Bennett

e-mail: emb@mechsol.com

Vice President of Fluids Engineering
Mechanical Solutions, Inc.
Project Summary

Timeline:
Start date: 10/2015
Planned end date: 6/2017

Key Milestones
1. Milestone 3.3.1; 1/29/16
2. Milestone 2.1.1 ~40% complete; 1/29/16

Budget:
Total Project $ to Date:
• DOE: $134,406 + $56,776 (fy: 2016)
• Cost Share: $52,867

Total Project $:
• DOE: $999,921 ($362,794 Approved Budget)
• Cost Share: $251,525 ($125,886 Approved Budget)

Key Partners:

<table>
<thead>
<tr>
<th>Lennox International, Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TURBOCAM International, Inc.</td>
</tr>
</tbody>
</table>

Project Outcome:
Advance unrealized design potential of small centrifugal vapor compression in conjunction with advanced heat exchanger design to reduce environmental burdens with the use of low-GWP refrigerants while cost-effectively maintaining performance.
Purpose and Objectives

Problem Statement: Advance unrealized design potential of small centrifugal vapor compression in conjunction with advanced heat exchanger design to reduce environmental burdens with the use of low-GWP refrigerants while cost-effectively maintaining performance.

Target Market and Audience: This project is targeted toward residential and commercial air conditioning. The market is approximately 3 quads of cooling for both residential and commercial. The audience is new units selected for low-GWP refrigerant capability.

Impact of Project:

• **Project Output** – Technical performance goals met, technical and manufacturing pathway established, and prototype for efficient use of low-GWP refrigerants in HVAC applications
• **Near-term outcomes**: Private sector aware of technology through investment/collaboration, begin additional investment to refine technology/reduce cost
• **Intermediate outcomes**: Continued partnership with private sector system and component manufacturers to refine technology and reduce cost, introduce to market
• **Long-term outcomes**: Enable cost effective and energy efficient shift to low-GWP refrigerants in HVAC industry
Approach

Approach: Develop conceptual model in collaboration with system vendor to determine efficiencies, system design and manufactured cost. Refine design and build/test prototype to validate solution.

Key Issues:
1. **Efficiency** – Low-GWP refrigerants are new and untested in this application. Early compressor studies are based on isentropic efficiency, but system efficiency results required.
2. **System integration** – Small centrifugal is a departure from current HVAC applications in this size range. Need good integration into system, including operating methodology, materials compatibility, etc. Heat exchanger is an integral component.
3. **Cost** – Technology will need to be cost effective to be adopted by industry and subsequently consumers.

Distinctive Characteristics: Determine system efficiency and cost estimates early in program
Progress and Accomplishments

Accomplishments:
- Study of various low-GWP refrigerants performed and downselected
- Conceptual aero design completed
- Preliminary heat exchanger design completed, parts being sourced
- Conceptual bearing and motor design completed

Market Impact:
- Presenting findings to date at Purdue Compressor Conference Aug 2016
- Still early in project (Budget Period 1)

Awards/Recognition:
- None to date

Lessons Learned:
- Business Development negotiations with partners can be very time consuming
Project Objectives

• Design and development of an ultra-small, efficient, maintenance-free, oil-free, inexpensive centrifugal compressor, including aero components, rotor-bearing system, inverter and motor for a 5-ton air conditioning system
• Optimization for partial load efficiency, without sacrificing peak load performance
• Design for manufacturability and cost
• Validation and system integration of a high effectiveness heat transfer system, engineered for a very low-GWP refrigerant, e.g., microchannel heat exchanger
• Analysis of:
 — very low-GWP refrigerant compatibility with system materials
 — throughput benefits of centrifugal compression of lower density, very low-GWP’s
• Quantification of beneficial lifecycle impacts of centrifugal technology, including installation, diagnosing, and servicing of systems
• Optimization for unitary “drop in” replacement, including flammability and safety risks, suction line pressure drop, and performance relative to outdoor temperature
• Testing of prototype system
Design and Prototype Development Flowchart

1. System Design
 - Preliminary Compressor Aero Design
 - Detailed Compressor Aero Design
 - Detailed Compressor Manufacturing and Mechanical Design
 - Oil Free Bearing and Motor Design
 - Prototype Development and Testing
 - Integration with Lennox Air Conditioner
System Design

- Conducted by Lennox
 - System design consisting of all components (Compressor, heat exchanger, etc.), using Cycle_D code
- Multiple refrigerants examined
 - Several HFO blends were evaluated
Preliminary Aero Design

- Conducted using PCA Vista Design Code and CFturbo
- Both codes employed modified Redlich Kwong and Peng Robinson Equation of State (EOS) to simulate Refrigerant PVT behavior
Detailed Aero Design

• Upon Completion of the preliminary design, a detailed 3-dimensional geometry of the centrifugal compressor was made using specific turbomachinery design software (ANSYS and CFturbo).
• The flowpath was analyzed using the real gas CFD code, STAR-CCM+
• A secondary flowpath was added to the system using the NX and Pro-Engineer CAD products to add fidelity to the analyses.
• Complete analyses were conducted for subject refrigerants.
• The analyses were completed at the rated condition, as well as a appropriate turndown condition to ensure proper off-design performance.
• The effect of the foil bearings were considered in these analyses. A supply flow was taken from the impeller. This flow will feed the bearings, and provide motor cooling flow.
Compressor Coupled CFD Analysis
Project Integration and Collaboration

Project Integration:
MSI and Lennox are coordinating system design parameters to guide development. Lennox participates in requirements definition, design reviews, and parallel development.

Partners, Subcontractors, and Collaborators:
Project partner – Lennox International, Inc.

Communications:
Presenting findings to date at Purdue Compressor Conference Aug 2016
Project Plan and Schedule

Project Dates:
- **Start:** 10/2015
- **End:** 6/2017

Current and Future Work
- See Schedule

Major Task Schedule

<table>
<thead>
<tr>
<th>Phase</th>
<th>SOPQ</th>
<th>Task #</th>
<th>Task Title or Milestone/ Deliverable Description</th>
<th>Performer (if different from recipient)</th>
<th>Task Completion Date</th>
<th>Progress Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Program Management - Ongoing</td>
<td>Principal Engineer I</td>
<td>9/30/2017</td>
<td>10/12/2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Requirements Definition</td>
<td>Vice President</td>
<td>6/31/17</td>
<td>60%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>First version of Requirements Document complete</td>
<td>Vice President</td>
<td>1/29/2016</td>
<td>2/28/2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Materials Compatibility Investigation</td>
<td>Lennox</td>
<td>4/30/2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Preliminary materials selection complete</td>
<td>Lennox</td>
<td>1/29/2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Final materials selection</td>
<td>Lennox</td>
<td>7/30/2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Market Transformation</td>
<td></td>
<td>6/30/2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Obtain letter of interest from potential</td>
<td></td>
<td>4/30/2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Conceptual Design</td>
<td>Vice President</td>
<td>2/28/2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Aerodynamic Design</td>
<td></td>
<td>1/15/2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Motor Type Selected</td>
<td></td>
<td>3/1/2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Economical bearing solution identified</td>
<td></td>
<td>2/28/2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Preliminary & Critical Design</td>
<td>Vice President</td>
<td>8/30/2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Final integrated compressor/motor design</td>
<td></td>
<td>8/30/2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Refrigerant selection</td>
<td></td>
<td>8/30/2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Go/No-Go Decision Point (Continuation Report)</td>
<td></td>
<td>6/30/2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Prototype Procurement and Assembly</td>
<td>Principal Engineer I</td>
<td>3/31/2017</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>LCCP improvement of at least 38% over typical A/C unit</td>
<td></td>
<td>9/30/2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Checkout test successful</td>
<td></td>
<td>3/31/2017</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Heat Exchanger Design</td>
<td>Lennox</td>
<td>12/31/2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Heat exchanger types for evaluation selected</td>
<td>Lennox</td>
<td>11/30/2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Achieve condenser HX cost parity vs. baseline R-410A condenser</td>
<td>Lennox</td>
<td>12/31/2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>Procure Heat Exchanger Prototype</td>
<td>Lennox</td>
<td>1/30/2017</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>Integrated compressor/motor and a/c system tests</td>
<td>Principal Engineer I</td>
<td>4/30/2017</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>100% speed test for compressor</td>
<td>Principal Engineer I</td>
<td>4/30/2017</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>Final Design</td>
<td>Vice President</td>
<td>6/31/17</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>Final manufactured component cost still below $275 per unit (Go/No-Go Meeting)</td>
<td>Lennox</td>
<td>6/31/17</td>
<td></td>
</tr>
</tbody>
</table>

Project Schedule has been shifted by 2 months due to late kickoff meeting.

First Version Of Requirements Document To Be Finalized At Concept Design Review.

Subtask 4.2 (Identified TURBOCAM) Conducting In Concert With Production Cost Estimate Effort.

Per DOE/MSI Aerodynamic Design Review (1/19/2016).
Project Budget

Project Budget:
- DOE: $999,921 ($362,794 Approved Budget)
- Cost Share: $251,525 ($125,886 Approved Budget) - Lennox International, Inc

Variances:
- Currently no variances specific to project

Cost to Date:
- Cost Share: $52,867 (CY 2015)

Additional Funding:
- Strategic Partner (Lennox International, Inc.) To Dedicate $251K Cost Share

Budget History

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE $134,406</td>
<td>Cost-share $52,867</td>
<td>DOE $240,375</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cost-share $71,517</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DOE $625,140</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cost-share $127,141</td>
</tr>
</tbody>
</table>
Next Steps and Future Plans:

- Consider 2-stage compressor
 - Longer lifecycle
 - More refrigerant options
 - Applicable to heat pumps, including cold climate
- Need to investigate higher resolution 3-d printing for various materials